INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing
from left to right in equal sections with small overiaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Games in Open Systems Verification and Synthesis
by

Yiu-Chung Mang

M. Eng. (Oxford University, England) 1995

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY OF CALIFORNIA. BERKELEY

Committee in charge:
Professor Thomas A. Henzinger. Chair
Professor Robert K. Brayvton
Professor John Steel

Spring 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3063469

®

UMI

UMI Microform 3063469
Copyright 2002 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M1 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Games in Open Systems Verification and Synthesis

Copyright 2002
by

Yiu-Chung Mang

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

Games in Open Systems Verification and Synthesis
by

Yiu-Chung Mang

Doctor of Philosophy in Computer Science
University of California. Berkeley

Professor Thomas A. Henzinger. Chair

This dissertation investigates game-theoretic approaches to the algorithmic analysis of con-
current. reactive systems. A concurrent system comprises a number of components working
concurrently: a reactive system maintains an ongoing interaction with its environment. Tra-
ditional approaches to the formal analysis of concurrent reactive systems usually view the
system as an unstructured state-transition graphs: instead. we view them as collections
of interacting components. where each one is an open system which accepts inputs from
the other components. The interactions among the components are naturally modeled as
sames.

Adopting this game-theoretic view. we study three related problems pertaining to
the verification and synthesis of systems. Firstly. we propose two novel game-theoretic tech-
niques for the model-checking of concurrent reactive systems. and improve the performance
of model-checking. The first technique discovers an error as soon as it cannot be prevented.
which can be long before it actually occurs. This technique is based on the key observation
that “unpreventability” is a local property to a module: an error is unpreventable in a mod-
ule state if no environment can prevent it. The second technique attempts to decompose
a model-checking proof into smaller proof obligations by constructing abstract modules
automatically. using reachability and “unpreventability™ information about the concrete
modules. Three increasingly powerful proof decomposition rules are proposed and we show
that in practice. the resulting abstract modules are often significantly smaller than the con-
crete modules and can drastically reduce the space and time requirements for verification.

Both techniques fall into the category of compositional reasoning.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Secondly. we investigate the composition and control of synchronous systems. An
essential property of synchronous systems for compositional reasoning is non-blocking. In
the composition of synchronous systems. however. due to circular causal dependency of
input and output signals. non-blocking is not always guaranteed. Blocking compositions of
systems can be ruled out semantically. by insisting on the existence of certain fixed points.
or syntactically. by equipping systems with types. which make the dependencies between
input and output signals transparent. We characterize various typing mechanisms in gamne-
theoretic terms. and study their effects on the controller synthesis problem. We show that
our typing systems are general enough to capture interesting real-life synchronous systems
such as all delay-insensitive digital circuits. We then study their corresponding single-
step control problems — a restricted form of controller synthesis problem whose solutions
can be iterated in appropriate manners to solve all LTL controller synthesis problems.
We also consider versions of the controller synthesis problem in which the type of the
controller is given. We show that the solution of these fixed-type control problems requires
the evaluation of partially ordered (Henkin) quantifiers on boolean formulas. and is therefore

harder (nondeterministic exponential time) than more traditional control questions.

Thirdly. we study the synthesis of a class of open systems. namely. uninitialized
state machines. The sequential synthesis problem. which is closely related to Church’s solv-
ability problem. asks. given a specification in the form of a binary relation between input
and output streams. for the construction of a finite-state stream transducer that converts
inputs to appropriate outputs. For efficiency reasons. practical sequential hardware is often
designed to operate without prior initialization. Such hardware designs can be modeled by
uninitialized state machines. which are required to satisfy their specification if started from
any state. We solve the sequential synthesis problem for uninitialized systems. that is. we
construct uninitialized finite-state stream transducers. We consider specifications given by
LTL formulas. deterministic. nondeterministic. universal. and alternating Biichi automata.
We solve this uninitialized synthesis problem by reducing it to the well-understood initial-
ized synthesis problem. While our solution is straightforward. it leads. for some specification
formalisms. to upper bounds that are exponentially worse than the complexity of the cor-
responding initialized problems. However. we prove lower bounds to show that our simple
solutions are optimal for all considered specification formalisms. The lower bound proofs

require nontrivial generic reductions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Professor Thomas A. Henzinger
Dissertation Committee Chair

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to Wendy ...

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

List of Figures v
vi

1 Introduction 1
1.1 Backgroundo l
[.1.1 Verification and synthesis 1

1.1.2 Open systems and Games {

1.1.3 Games in logic and concurrency theory L. T

1.2 Thesis Overview e 3
1.2.1 Early error detection in model-checking 9

1.2.2 Automatic assume-guarantee proof decomposition o .. 10

1.2.3 The composition and control of synchronous systems 10

1.2.4 Synthesis of uninitialized systems 12

2 Preliminaries 13
2.1 Modules and compeosition L0 L Lo 13
2.2 Vertfication 0oL oL 14
2.2.1 Specification: Linear-time temporal logic 14

2.2.2 Reachability and invariant verification 15

2.2.3 Single-step vs. multi-step verification o000 0L 16

2.3 Controllability oo 17

3 Early Error Detection 20
3.1 Imtroduction oL 20
3.2 Early Detection of Invariant Violation 24
3.2.1 Forward and backward state exploration L. 24

3.2.2 Controllability and early error detection 25
3.3 Lazy and Constrained Controllability 2
3.3.1 Lazy controllability 2
3.3.2 Constrained controllability 28
3.4 Experiments 2
3.4.1 Demarcation protocol
3.4.2 Two-chip intercom

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS

3.4.3 Results on BDD sizes and discussion
3.5 Bounded Controllability and Iterative Strengthening
3.5.1 Bounded controllability 000
3.5.2 Iterative strengthening

3.5.3 Discussion

4 Automatic Proof Decomposition
4.1 Introduction

4.2 Overview and Additional Definitions
4.2.1 Chapter Overview
4.2.2 Additional Definitions

4.3 Modular Rules for Invariant Verification
4.3.1 Reachability-based abstractions
1.3.2 Controllability and reachability-based abstractions
[mplementation of the Verification Rules

4.5 Experimental Results
4.5.1 Demarcation protocol

4.5.2 Token ring arbiter

4.53.3 Sliding window protocol

4.53.4 Discussion

5 Composition and Control
.1 Introduction

Ut

5.2 Types for Synchronous Composition
5.2.1 Asynchronous modules oo o o000
522 Mooremodules oo oL
5.2.3 Statically typed modules (or Reactive Modules [AH99])
5.2.4 Dynamically typed modules
5.2.5 Dependent typemodules. Lo L.
5.2.6 Summaryoftypes. L. e

5.3 Application: Constructive Semantics

5.3.1 Boolean circuits L oL
5.3.2 Constructive operational semantics

5.3.3 From boolean circuits to modules

5.4 Untyped and Typed Control Problems
5.5 Algorithms and Complexity of Control
5.5.1 Asynchronous control
5.5.2 Moorecontrol L.
5.5.3 Statically typed controlo
5.5.4 Dynamically typed controlo 0oL

5.5 Dependent typecontrol00 L.

Unrestricted control

Wy Ur
Ty
- W

The relative power of controllers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

il

33
33
34
35

w W
-1~

- e
NN

e e e e e
ORI O

(1 B B, B |
woem b o

[\ I

o QR
-

60
60
60
61
62
61
69
70
w0
70
il
3
b}
6

i

i
9
31
33
33

CONTENTS

6 Synthesis of Uninitialized Systems
6.1 Preliminaries
6.2 The Uninitialized Realizability Problem
6.2.1 Reducing URPtoRP
6.2.2 Constructing always(R)
6.23 URP Complexity
6.3 Uninitialized Specifications

Bibliography

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85
38
39
90
91
92
99

103

List of Figures

3.1 The TCI protocol stack and the number of iterations of global state explo-
ration to discover the error.

........................... 31
5.1 A cyclic circuit composed of three modules P. Q. and R. It performs the
following function: if s’ then ' = F(G(t')) else v’ = G(F(r')). where F
and G are two combinational blocks. such as a shifter and adder. 66
5.2 A latch implemented as two NAND gates. 68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

3.

6.

1

[V

W N —

(8]

Number of iterations required in global state exploration to find errors in 3
models of the demarcation protocol. The errors are el.....cs. The columns
are L (lazy controllability). C (constrained controllability). R (regular con-
trollability). and G (traditional global state exploration). R
Average maximum number of BDD nodes required for error detection during
the controllability (Control) and reachability computation (Total) phases.
Dyuamic variable ordering was turned off in (a) and (b). and on in (¢) and
(1). The results are given for lazy controllability and global state exploration.
All data are in thousands of BDD nodes. and the standard deviations are
given in parenthesis.

Experiment results on the demarcation protocol.
Experiment results on the token-ring arbiter.

p g
Experimnent reults on the sliding window protocol.

(a) Complexity of composability checking. as well as single-step and multi-
step control for the various module classes. For staticallv and dynamically
typed modules. we consider both arbitrary and fixed controller types. The
quantity n is the size of the module description. Each problem is complete
for the corresponding complexity class. (b) Existence of most state-general
(MSG) and most general (MG) controllers.

The cost of moving from R to always({R).
The complexity of the RP. URP. and USP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

30

U Ot
[)

ol
i

vii
Acknowledgments

[would like to express my sincere gratitude towards my advisor Prof. Thomas
A. Henzinger. [thank him for his generous financial support: for teaching me everything
necessary to carry out research work: for his vision and inspiration un the future of formal
methods: and for his patience and encouragement during the ups and downs of my entire
graduate life.

My gratitude also goes to Luca de Alfaro. We spent many hours working on
various research problems: in fact. most results presented in this dissertation were obtained
in collaboration with him. He is quick. and is always enthusiastic about every idea. Luca
is also a very good friend: He introduced me to photography and Italian cooking. It is
wonderful to be able to work with him.

A large portion of the first half of my graduate life went to the development of the
model-checker MoOCHA. a joint effort with Shaz Qadeer and Sriram Rajamani. It is a great
experience working with them. Developing a large software system is a huge undertaking:
without them. it would not be possible to have this tool for conducting all the experiments
in this dissertation. [thank Sriram Krishnan and Orna Kupferman. whom [have been
fortunate enough to work with on one of the problems presented in this dissertation. [also
thank Rupak Majumdar and Jean-Francois Raskin for the fun when working on one of the
papers.

[gained my first industrial experience on model-checking during my two summer
internships at the Intel Strategic CAD Labs in Hillsboro. Oregon. [thank Pei-Hsin Ho for
being my mentor at SCL. He taught me much about model-checking. and formal verification
in general. from the industrial perspective.

My stay at Berkeley has been enjoyable. I thank all the members of the Berkeley
CAD group for contributing to such an inspiring and pleasant research environment. [
thank Michael Shilman for organizing the CAD picnic with me: Subarnarehka Sinha for
sharing my burden {both physically and financially) in organizing the CAD seminar. [also
thank her for listening patiently to all my grumble about life.

Finally. [am very grateful to my parents and Wendy. who have endured my pursuit

of doctoral degree. A million words cannot express my gratitude towards them.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

My work is a game. a very serious game.

- M.C. Escher (1898 - 1972)

1.1 Background

1.1.1 Verification and synthesis

This dissertation investigates game~theoretic approaches to the algorithmic analy-
sis of concurrent reactive systems. A concurrent system cowmprises a number of components
working concurrently: a reactive system maintains an ongoing interaction with its environ-
ment. Such systems abound in real-life: digital circuits. microprocessors. communication
protocols. control of nuclear reactors. to name a few. Logical correctness in the design of
such systems are of paramount importance: in the case of digital circuits and microproces-
sors. logical errors may result in loss of millions of dollars {Coe95]: in the case of nuclear
reactors. loss of human lives. Hence. for decades. producing correct reactive systems have
been the main subject among engineers and computer scientists. Formal methods have
evolved to be one of the most prominent tools in the design of correct svstems.

Correct systems can be designed by hand followed by verification: they can also
be synthesized automatically from the specifications. [n formal methods. both the systems
and the specifications are given in some formal languages such as modal logic or automata
that accept infinite words. In systems verification. the most widely used technique is ex-
tensive simulation. This technique serves as a good method to falsify the design: however.

correctness can never be guaranteed. The second approach is based on deductive meth-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION 2

ods. including theorem proving (cf. [Gor88. Pau94[). term-rewriting (cf. [D.J39. Klo91]) and
proof checking (cf. [DFH793]). These techniques generally regard the systems as a set of
axioms and attempt to prove that the specifications are theorems of these axioms. While
these techniques. in principle. can handle arbitrary complicated designs. they often require
much manual intervention and a great deal of training in mathematical logic.

The third approach to the verification of reactive systems is based on algorith-
mic methods. These include temporal-logic model-checking [QS81. CES86. VW94]) and
refinement checking. In this approach. the systems are modeled as state-transition systems
(Kripke structures). while the specifications can be specified in modal logic formulas. w-
automata (automata that accepts infinite words) or even another state-transition system
(in the case of refinement checking). The model-checking problem then asks. given a sys-
tem and a specification. if the specification holds in the system. The refinement-checking
problem(cf. [Raj99]). asks. given a system P (implementation) and a system Q (abstract
specification). if the behaviors of P are included in the behaviors of Q. The most accepted
notions of “inclusion™ are trace-containment and simulation relation [Mil71]. In essence.
both temporal-logic model-checking and refinement checking consist in exhaustive searches
in the state-space of the state-transition systems and can be highly automated: hence they
are well-suited for the automatic verification of finite-state system.

Popular modal logics for specifying nonterminating reactive systems include Linear
Temporal Logic (LTL) [Pnu77]. Computation Tree Logic (CTL) [CE81. QS81] and modal
pe-calculus [Koz83]. LTL is a linear-time logic for expressing properties about linear. infinite
computation traces generated from the state-transition systems. Its syntax has. in addition
to atomic propositions and oolean operators. a number of modal operators including Og (¢
holds in the successor state). Oy (¢ holds in all subsequent states) and o U & (¢ holds in the
subsequent states until v holds). where © and v are LTL formulas. On the other hand. CTL
expresses properties about the infinite computation trees of the systems. [t allows expression
of universal as well as existential properties such as “from all states. there exists a path to
the reset state.” Unlike LTL. its modal operators are quantified by either the universal ¥
(all successors) or the existential 3 (some successors) quantifier. The p-calculus is a modal
logic for specifying properties of reactive systems modeled as Kripke structures. The syntax
of propositional pu-calculus counsists of boolean operators and modalities including YO (for
all successors) and 3O (exists some successors). as well as the greatest and least fixpoint

operators. Both LTL and CTL are fragments of p-calculus since the modal operators O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION 3

and U can both be encoded in p-calculus using fixpoints.

The main limiting factor in the algorithmic analysis of finite-state systems is the
state-explosion problem: that is. the number of states to be explored can be exponential in
the number of concurrent components in the system. To see this. consider a systemn P with
m components. each having at most n states. Then the system P may have n™ states. In
fact. for most popular system description languages. both temporal logic model-checking
and refinement checking are known to be PSPACE-complete in the size of the description
of the reactive systems [SC85. AH98]. To combat the state-explosion problem. a number of
techniques have been proposed. For example. the symbolic techniques [McM93] represent
the states and transitions of the systems implicitly using some succinct data structures. such
as decision diagrams [Bry86| or boolean formulas [BCCZ99}: abstract interpretation [Dam96.
GSY7] abstraces away the nonessential part of the systems and therefore reduces the state
space to be explored: compositional or modular verification attempts to prove the properties
of a system by reasoning about behavior of the individual components. One notable example
of compositional verification is assume-guarantee reasoning [Sta85. CLMS89. ALY5. AH99.
MeM97. HQROO]: the essential idea is to verify each component assuming the presence of
a correct environment. This assumption will then be discharged by proviug that it is an
abstraction of the real environment.

Correct systems can also be synthesized from specifications. Automatic construc-
tion of correct systems has attracted much attention in several branches of engineering.
For example. in Very Large Scale Integrated (VLSI) circuits where finite state machines
constitute the basic building blocks of such circuits. the sequential synthesis problem asks.
given a specification characterizing the set of permissible iinplementation. for the construc-
tion of a finite state machine M allowed by the specification such that M satisfies some
optimality criteria [dM94]. In control theory. discrete-event systems (DES) [RWS89] model
the sequencing of events of dyvnamic systems. such as the arrival or departure of a customer
in a queue. the start or completion of a task in an operating system. or the transmission
or receipt of a packet in a communication system. The control problem of an DES P asks
for synthesizing a controller C' (or supervisor) such that the composed. closed-loop system
P||C. where || denotes lock-step composition. meets certain safety criteria such as stability.
mutual exclusion and data consistency. The control problem for DES is highly related to
the synthesis problem. and they share much similarity in the formalisms and solutions.

Informally. the synthesis problem can be stated as follows: a stream requirement is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION 4

a specification on the input-output behavior of the synthesized system. and the realizability
problem asks. given an specification ¢ (expressed as modal logic formulas or w-automata)
over sets of input and output signals. whether there exists a reactive system that assigns to
every possible input sequence an output sequence so that the resulting computation satis-
fies 1. If the answer is Yes. then the synthesis problem asks for the construction of such a
system. The synthesis problem. closely related to Church’s solvability problem [Chu62]. was
solved by Biichi and Landweber for stream requirement given as sequential calculus [BL69).
Since then. several algorithmic solutions have been proposed for other specification for-
malisms including LTL [ALW89. PR89a. PR89b]. CTL [KMTV00] and p-calculus [KV00].

In general. the synthesis problem is harder than the verification problem. For
finite-state systems. while LTL verification problem is in PSPACE. the LTL synthesis prob-
lem is 2EXPTIME-complete [PR89a]. One source of hardness. like verification. is the state-
explosion problem. Also. the synthesized systems are usually required to meet certain
minimal behavior such as deadlock-freedom (nonblocking): that is. any finite trace of the
synthesized system should always be extensible to a longer finite trace that belongs to the
system. The nonblocking requirement is essential in several verification methodology such
as assume-guarantee reasoning and simulation generation [KMP98]. In addition. synthesis
of controllers often suffers from the obseruvability problem [CDFV88. LWS88b]. in which some
events of the system may not be observable by the controller. While the synthesis of a two-
component system under partial observation (incomplete information) for LTL may incur
exponential costs over that under complete information [RG95. Var95. KS97]. the synthesis
of a multi-component system (such as decentralized supervision [LW88a. LW90. RW92])
under incomplete information is in general undecidable [Rei84. PR90]. Practical remedies
are often architectural in nature: they include hierarchical and modular synthesis [WW96]

and various domain specific heuristics [Oku86. CL90. PRSV98].

1.1.2 Open systems and Games

In verification. the inputs from the environment to a svstem are treated as part
of the system. which assigns nondeterministic values to the inputs. We call these systems
closed. In synthesis. however. systems are treated as open: they interact with their environ-
ments and cannot constrain their environments’ behaviors. Hence. a stream transducer. an

open-loop DES. and a component in a closed system are all open systems. Open systems

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION

on

possess interesting properties such as realizability. Besides. researchers have proposed other
properties related to open systems. We give some examples below.

Receptiveness [Dil89, AL93, GSSAL98]. Given a reactive system. specified by a set
of safe computation traces and a set of live computations (typically. expressed by an LTL
formula). the receptiveness problem is to determine whether every finite safe computation
can be extended to an infinite live computation irrespective of the behavior the environment.
Module checking [KV96]. Given an open system and a CTL formula ¢. the module-
checking problem is to determine if. no matter how the environment restricts the external
choices. the system satisfies .

Well-formedness of component interfaces [dAHO0la, dAHO01b, CAAHMO02]. Given
an interface F specified as a state-transition system. where each transition of F are anno-
tated with an input assumption. that is. a set of input signals that F accepts: and an output
guarantee. that is a set of output signals that F outputs if the input assumption is satisfied.
An error state of F is a state where the environment of F cannot produce an input that
F accepts. The interface F is well-formed iff the error state is not reachable under some
environment. Well-formedness is less restrictive than receptiveness. which requires F to
accept all inputs under «ll environments. and it permits the reasoning about components
that have bidirectional ports [CdAHMO02|.

Alternating temporal-logic [AHK97]. Given a Alternating temporal-logic (ATL) spec-
ification v and a concurrent system P = P||P, comprising two interacting components
(agents) Py and P». the ATL verification problem asks if the system P satisfies the specifi-
cation . Questions that one can asks in ATL include: Does the agent Py (say. a processor
in a multi-processor system) have a strategy to mect a requirement (say. the eventual own-
ership of the bus) no matter what the other agents (say. processors) do? Does the agent P
(say. a traffic-light controller) have a strategy to avoid violation of some requirement (say.
simultaneous green lighis at an intersection) no matter what the other agents (say. vehicles
on the road) do?

ATL extends the logic CTL: while CTL allows expression of universal and existen-
tial properties of closed systems. ATL also allows expression of adversarial and protagonist
properties. The syntax of ATL generalizes the path quantifiers of CTL from ¥ and 3 to
{P)w (P can ensure that. no matter what the environment of P does. ¢ holds). and [P]¢
(P cannot avoid ¢). where P is an open system. ATL has been applied in several areas

of computer sciences such as correctness analysis of security protocols [KR00. KRO1] and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 6

feature interactions [CRS00].

All the stated problems arise from the interaction among the various components of
the systems. and possess a game-like (V3) interpretation: Does a solution exists no matter
what the adversary (e.g. environment) does? This is in contrast to the closed system
verification problem which asks for the solution of an 3 problem: for instance. does the
system as a whole have a path to reach a bad state? Interactions among the open systems
can be modeled as a game. while the participating systems are modeled as the players. and
the specification modeled as the winning condition of the game. Then. solving the above
stated problems amounts to solving the game. that is. deciding the winner of the game.

We adopt this game-theoretic view of systems in reasoning about complex systems
that consists of components: often this view gives new insights in devising new model-
checking algorithms. As an example. if one proves that a compouent P has a strategy to
reach a goal no matter what its environment does. then the system P{Q consisting of P and
(0 has a path to reach that goal. As a result. there is no need to compute the composition
of the components. and state-explosion can be avoided. In this dissertation. we study ways
to improve the efficiency and capacity of LTL symbolic model-checking of closed. reactive
svstems. by reasoning about their components as open systems.

We are interested in the games arising from syvnchronous systems since they rep-
resent a large class of interesting and practical systems. such as electronic circuits. Solving
the games arising from synchronous systems often require the solutions to the single-step
games. which informally asks if the system or its environment can reach a specified goal
{e.g. a specified state) in exactly one step. For example. consider the following multi-step.
reachability game: Does the system have a strategy to reach a specified state s eventually.
We can solve the problem by iteratively asking: Is the system already in the state s? Does
the system have a strategy to reach s in one step? Does the system have a strategy to reach
s in two steps? Does the system have a strategy to reach s in & steps? Clearly. for finite
state svstems. the number &k of questions to ask is bounded by the number of states in the
systems.

Hence. for synchronous systems. the algorithm for solving a game consists of two
orthogonal parts: a routine for solving single-step games. and a “control structure™ that
iterates the routine. While the control structure is generally dependent only upon the spec-
ification. and indeed for some specification formalisms such as p-calculus. the control struc-

ture is readily obtained from the specification. the single-step games arising from different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER |I. INTRODUCTION

b |

types of synchronous systems require different solutions: for Moore systems whose outputs
are independent of the current inputs. their single-step games can be solved by evaluating
quantified boolean formulas (QBF) with only one V3 switch: whereas tor Mealy systems
whose outputs may depend on the current inputs. solving the corresponding single-step
games may require the evaluation of QBF formulas with multiple switches. The classifica-
tion of synchronous systems and the study of their single-step games are the main theme

of this dissertation.

1.1.3 Games in logic and concurrency theory

Formal verification and synthesis have their roots in mathematical logic and con-
currency theory. where games play an important role. We briefly mention some examples
of such games which we may touch upon in this dissertation.

Model-checking of j:-calculus. The model-checking problem of p-calculus asks. given a
p-calculus formula > and a Kripke structure K. if 2 holds in K. The p-calculus model-
checking problem was first studied in [EL86]. and it can be casted as the rmodel-checking
game [Sti95].

pi-calculus Model-checking and Parity games. The exact complexity of the p-calculus
model-checking problem remains unknown after more than a decade of active research. The
best known complexity is due to [Jur00]. who showed that the problem is UP M co-UP. It is
an open problem if g-calculus model-checking can be done in polynomial time. On the other
hand. the p-calculus model-checking game has been shown to be polynomially reducible to
a variety of games. including parity game [Sti95. EJS93]. mean payoff game [Pur95. Sti95.
Jur00]. discounted payoff game [ZP96] and stochastic game [Con92. Pur95. Sti95. ZP96|.
and the search for polynomial time solutions to these games is under active research among
logicians. computer scientists and game-theorists.

Equivalence of Kripke structures. Two Kripke structures are indistinguishable by any
p-calculus formula if and only if they are bisimilar. Bisimilarity can be characterized by
the hisimilation game [Tho93. Sti97]. In essence. the bisimilation game is similar to the the
Ehrenfeucht-Fraissé game for showing elementary equivalence of first-order structures.
Decidability of second-order logic. To prove the decidability of the theories of monadic
second order logic with n-successors (SnS). Rabin introduced what is now known as the

Rabin tree automata [Rab69]. The proof entails in showing that Rabin tree automata

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION 8

are closed under disjunction. projection and complementation. While proving the closure
of Rabin tree automata under the disjunction and projection is relatively straight-forward.
the proof of closure under complementation. also known as the Complementation Lemina. is
very complicated and the original proof given by Rabin is highly involved. Many simplified
proofs have been suggested [HR72. MS84. Muc84| since then. One of the best known proofs
uses infinite games [GH82].
Equivalence of p-calculus and Rabin Tree Automata. Research on p-calculus gives
new insight to mathematical logic. In automatic-theoretic methods. one associates. for
each formula of a temporal logic. a finite automaton that recognizes exactly those infinite
structures in which the formula holds. Then the satisfiability problem for the formula can
be reduced to checking nonemptiness of the associated automata. When the logic is p-
calculus. one can associate each p-calculus formula with a Rabin tree automaton. It has
been shown that p-calculus on infinite trees is expressively equivalent to that of Rabin tree
automata [EJI9L]: given a p-calculus formula . there exists a Rabin tree automata {7 (and
vice versa). such that an infinite tree S is a model of ¢ iff § is accepted by U. Since
p-calculus is trivially closed under complementation. the equivalence in expressive power
provides an alternative proof of the Complementation Lemma.

Games are also used in other branches of computer science sich as Finite Model
Theory and Descriptive Set Theory. Note that the games used in logic and concurrency
are usually turn-based (each turn either play moves) and the single-step games are trivial.
whereas the games for characterizing open systems usually involve concurrent movements

of the players. and hence have complicated single-step games.

1.2 Thesis Overview

This dissertation studies open systems using game-theoretic means. We study the

following three areas of open systems:

e Connection between open and closed systems verification: in particular. we study
techniques to improve the performance of traditional model-checking using game-
theoretic techniques pertaining to open systems verification. We view a system as
a collection of interacting components. Each interacting component is an open sys-

tem. Based on this view. we propose two novel game-theoretic verification algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION Y

namely. early error detection and automatic proof decomposition. They will be pre-
sented in Chapters 3 and 4. respectively. They are based on the materials presented
in [AdAHM99. dAHMOOb]. The games play on the state-space of the components
and the outcome of the games are used to infer properties about the complete system:

hence our algorithms fall into the category of compositional reasoning.

e Composition of synchronous open systems (systems that proceed in lock-step) and
single-step control problem: a controller provides input to an open system such that
the composed system behaves in a way that satisfies the specification. The output
signals of the controller depends on the input and output signals of the system and
some output signals of the system may not be observed. For instance. an input
of the controller cannot observe an output of the svstem that it does not depend
on. We provide game-theoretic definitions of increasingly stronger notions of input-
output dependencies. or fypes. and show that systems equipped with the strongest

tvpe models exactly all constructive. delay-insensitive digital circuits.

We then study the problem of single-step controller syuthesis (games) tor systems
equipped with various types and gives the complexity bounds. This will be presented

in Chapter 5. Some of this material was presented in [dAHMO0Oa. dAHMO1].

e Svnthesis of uninitialized systems: that is. open systems whose behaviors are inde-
pendent of the initial states. These systems naturally presents in practical hardware.
and form an interesting class of systems both practically and theoretically. We study

uninitialized systems using games and the results will be presented in Chapter 6. It

is based on [HKKMO02].

The chapters can be read independently (except for Chapter 2 which provides all the nec-
essary preliminaries used in all the subsequent chapters). The chapter summaries are given

below.

1.2.1 Early error detection in model-checking

Any formal method or tool is almost certainly more often applied in situations
where the outcome is failure (a counterexample) rather than success (a correctness proof).
[n Chapter 3 we present a method for symbolic model-checking that can lead to significant

time and memory savings for model-checking runs that fail. while occurring only a small

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1. INTRODUCTION 10

overhead for model-checking runs that succeed. Our method discovers an error as soon as it
cannot be prevented. which can be long before it actually occurs: for example. the violation
of an invariant may become unpreventable many transitions before the invariant is violated.

The key observation is that “unpreventability” is a local property of a single mod-
ule: an error is unpreventable in a module state if no environment can prevent it. There-
fore. unpreventability is inexpensive to compute for each module, yet can save much work
in the state exploration of the global. compound system. Based on different degrees of
information available about the environment. we define and implement several notions of
“unpreventability.” including the standard notion of uncontrollability from discrete-event

control.

1.2.2 Automatic assume-guarantee proof decomposition

Modular techniques for automatic verification attempt to overcome the state-
explosion problem by exploiting the modular structure naturally present in many system
designs. Unlike other tasks in the verification of finite-state systews. current modular tech-
niques rely heavily on user guidance. In particular. the user is typically required to construct
module abstractions that are neither too detailed as to render insufficient benefits in state
exploration. nor too coarse as to invalidate the desired system properties. In Chapter 4. we
propose a method where abstract modules are constructed automatically. using reachabil-
ity and controllability information about the concrete modules. This allows us to leverage
automatic verification techniques by applying them in layers: first we compute on the state
spaces of system components. then we use the results for constructing abstractions. and
finally we compute on the abstract state space of the system. Our experimental results
indicate that if reachability and controllability information is used in the construction of
abstractions. the resulting abstract modules are often significantly smaller than the concrete

modules and can drastically reduce the space and time requirements for verification.

1.2.3 The composition and control of synchronous systems

A fundamental question in the study of compositional verification of systems is the
semantics of composition. Reactive systems should be non-blocking. in the sense that every
state should have at least one successor state [BG88. Hal93. Kur94. Lyn96]. Non-blocking is

essential for compositional techniques such as assume-guarantee reasoning. In control. non-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION 11

blocking means that the controller should never prevent the plant from moving. However in
the composition of synchronous processes. non-blocking is not guaranteed in the product.
For example. the composition of an inverter component y = -~z and an identity component
y = r is blocking. Blocking compositions of processes can be ruled out semantically. by
insisting on the existence of certain fixed points. or syntactically. by equipping processes
with types. which make the dependencies between input and output signals transparent.
[n Chapter 3. we classify various typing mechanisms and study their effects on the control
problem. The semantics of types are given in game-theoretic terms.

A static type enforces fixed. acyclic dependencies between input and output ports.
For example. synchronous hardware without combinational loops can be typed statically. A
dynamic type may vary the dependencies from state to state. while maintaining acyclicity.
as in level-sensitive latches. Then. two dynamically typed processes can be syntactically
compatible. if all pairs of possible dependencies are compatible. or semantically compatible.
if in each state the combined dependencies remain acyelic. A dependent-type resolves the
dependencies gradually through a game among the components. as in gated clocks. We show
that dependent-typed modules are equivalent to constructive circuits. i.e.. circuits that have
a constructive semantics. which are in turn equivalent to all delay-insensitive circuits.

For a given plant process and control objective. there may be a controller of a
static type. or only a controller of a syntactically compatible dynamic type. or ounly a
controller of a semantically compatible dynamic type. or only a controller of dependent-
type. We show this to be a strict hierarchy of possibilities. and we present algorithms and
determine the complexity of the corresponding control problems. Furthermore. we consider
versions of the control problem in which the type of the controller (static. dvnamic or
dependent) is given. We show that the solution of these fixed-type control problems requires
the evaluation of partially ordered (Henkin) quantifiers on boolean formulas. and is therefore
harder (nondeterministic exponential time) than more traditional control questions. We also
show that. contrary to folk wisdoms. the notion of “the most general controller™ for safety

properties does not exist in general for most synchronous systems.

1.2.4 Synthesis of uninitialized systems

In the synthesis problem. the requirement on the input-output behavior of the

synthesized system. called the stream requirement. is specified formally by modal logic for-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER I. INTRODUCTION 12

mulas or w-automata. The Realizability Problem (RP) asks. given a stream requirement R.
to find a state machine that satisfies R. The problem was first stated by Church in [Chu62].
for stream requirements specified in the sequential calculus. Several solutions for it have
been studied [BL69. Rab72]. and in [PR89a]. Pnueli and Rosner solved it for specifications
given in linear temporal logic and suggested its applicability in open system synthesis and
control.

[n practice. however. sequential hardware is often designed to operate without prior
initialization. They can be modeled by uninitialized state machines. Such machines require
no reset circuitry and therefore have an advantage of smaller area. A well-known example of
uninitialized state machines is the [EEE 1149.1 standard for boundary-scan test [Com90]|.
whose specification consists of. among others. a state machine that needs not start from
a known state. Uninitialized state machines are also necessary for -safe replaceability”
of sequential circuits [SP94]. where a state machine is replaced by another in such a way
that the surrounding environment is not able to detect the changes. The replacing state
machine is an uninitialized state machine because it may power-up in an arbitrary state.
Uninitialized state machines have been studied by some researchers before [SP94. QBSP96].
[n Chapter 6 we study the synthesis problem of uninitialized state machines.

We define the Uninitialized Realizability Problem (URP). which asks given a stream
requirement R on the input-output behavior. to find an uninitialized state machine M that
satisfies R no matter what the initial state of M is. We study the URP for specifications
that are specified by LTL formulas or Biichi automata. We consider deterministic. nonde-
terministic. universal. and alternating automata. In particular. we provide an algorithm for
solving the URP for each of the above formalisms. and prove corresponding lower bounds.

The proofs turns out to be non-trivial. and require complicated generic reductions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

Chapter 2

Preliminaries

Mathematics is a game played according to certain simple rules with meaningless
marks on paper.

- David Hilbert (1862-1943)

Let .U be a set of variables. In this dissertation all variables range over the set B
of hooleans. We denote by PStates(X) the set of partial functions from X to IB. and by
States(X) the set of total functions. Given v € PStates(.\X). we write Var(rr) C X for the
set of variables on which v is defined. For ¥ C X. we write ¢[Y] for the restriction of v
to the variables in Y. We indicate with P(X) the set of predicates over X. For a boolean
formula > over X. we write p[v] = ofv(xr)/Ly..... v(rp)/ry) for the formula obtained by
replacing each variable r, € Var(v) in ¢ with the truth value v(x,). If 2[v] contains no free
variables. then we let [r] denote the truth value of p{v]. We sometimes write v = o iff
c[r]. We write X' = {I’ | £ € X} for the set of corresponding primed variables. and for
r € PStates(.X). we write ¢’ for the partial function in PStates{.X') such that '(r') = v(r)
for all x € Var(r). and v'(r') is undefined otherwise. Given a set A and an element r. we

often write A\ r for A\ {r}. when this generates no confusion.

2.1 DModules and composition

The basic entity for modeling components of concurrent systems are modules. A

module P = (Op. [p. Init p. 7p) consists of the following three components:

e A finite set Op of output variables. These variables are updated by the module.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. PRELIMINARIES 14

e A finite set Ip of input variables. These variables are updated by the environment.
The sets Op and Ip must be disjoint. We write Xp = OpU[p for the set of all module
variables. The states of P are Sp = States{(.Xp). and the partial (next) states of P
are Rp = PStates(.Xp). Unprimed variables represent current-state values: primed
variables. next-state values. A pair (s.t') € Sp x Rp is called an ertended state. For

any predicate o € P(Xp). the state s € Sp is a z-state if 2[s].
o An initiul predicate Initp € P(Xp). defining the set of initial states of P.

e A boolean formula 7p € P(XpU.X}). called transition predicate. over the set XpU X}
of variables: it relates the current-state and next-state values of the module variables.
The state t € Sp is a macro-step successor. or simply successor. of the state s € Sp if
7p{~Ut']. For a variable r € Xp. the extended state (s.u') € Sp x Rp is a (micro-step)
(r.7p)-successor of the extended state (s.t') if ' € Var(t') and there exists b € B

such that o' =t U {(£'.b)} and 7p[s U /] is satisfiable.

A Moore module P is a module whose transition predicate is independent of the next-
state values of the inputs. that is. 7p is over Op U Ip U Op. Two modules P and Q are
composable if their output variables Op and Og are disjoint. Given two composable modules
P and Q. the synchronous (lock-step) composition P|Q is the module with the components
Opug = 0pU0q. Ipyg = (IpUIQ)\Opyq. Initpyg = (Initp Alnity). and 7pyg = (TpATQ).

[n this dissertation. we consider modules that are non-blocking. A module P is
non-blocking if it has at least one initial state. that is. the initial predicate Init p is satisfiable:
and if every state has a successor. that is. for each state s there is a state ¢ such that rps U #'.

We assume that all predicates are represented in such a way that boolean op-
erations and existential quantification of variables are efficiently computable. Likewise.
we assume that satisfiability of all predicates can be checked efficiently. Binury decision

diagrams (BDDs) provide a suitable representation [Bry86].

2.2 Verification

2.2.1 Specification: Linear-time temporal logic

We consider specifications expressed by linear-time temporal logic (LTL) [Pnu77]

formulas over a set Prop of atomic propositions. The set of LTL formulas contains the atomic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. PRELIMINARIES 15

propositions Prop. and is the smallest set closed under applications of Boolean operators.
the unary temporal operator O. and the binary temporal operator /. LTL formulas are
interpreted over infinite computations. A computation is a function 7 : ¥ — 2P which
assigns a subset of Prop to each time instant : € N. For a computation @ = wg. wy.... let

m, be the suffix w;.w;,;.... Then we have:
e T=pforpe Xiff p € wy:
o Tk —ypiff T &
e rkEywVyiffrkE¢and 7 y:
e TE=O¢ iff m E p: and

o 7 = pU v iff there exists & > 0 such that 7 = . and for all 0 < ¢ < k. we have

m B e

We use the abbreviation ¢ for TU » which expresses the property that £ will eventually
hold: Q¢ for ~O—y which expresses the property that ¢ always holds.

For a module P a state s of P defines a subset L(s) = {r € Xp | r[s] } of
atomic propositions. A s-trace of P is a sequence of states 5§ = sy.5;... € (Sp)~ such that
s = sg and 7psx Usi] for & > 0. A s-trace is initial iff Initp[s]. A s-trace induces a
computation L(sg)L(s1)... € (2¥P)*. Given an LTL formula ¢ over Xp and a s-trace 5 of
P. we say that $ satisfies o if the computation induced by 5 satisfies . We write P.s & ¢
iff all s-traces of P satisfy . The LTL verification problem for a module P w.r.t. the LTL
formula ¢ asks whether all initial traces of P satisfv : that is. P.s E 2 for all s where
fnitp[[sﬂ.

Theorem 2.1 [AH98] The LTL verification problem for modules is PSPACE-complete.

2.2.2 Reachability and invariant verification

A state of a module P is reachable if it appears in some initial trace of P. We
denote by Reach(P) the predicate defining the reachable states of P: this predicate can be

computed using standard state-space exploration techniques [CES86] such as Algorithm 2.1.

Algorithm 2.1
Input: Module P.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. PRELIMINARIES 16

Output: Predicate Reach(P) over Xp.
Initialization: Let Uy = Initp.
Repeat: For & > 0. let
Uper =ULV3Xp . (T AU .
Until: Uy, = Us.
Return: U;.

Algorithm 2.1 computes Reach(P) by successively computing the predicates Uy. ['). U =
Uk.1 where U, defines the set of states that are reachable from any initial state of P in
at most ¢ steps. The predicate Reach(P) is therefore the fixpoint of the iterations. i.e..
Uy = U +1. when no more additional states can be reached.

One important LTL verification problem is the invariant verification problem which
asks. given a module P and a predicate ¢ € P(Xp). whether P satisfies the LTL formula Oe.
[t can be solved with the reachability predicate by checking if the implication Reach(P) —
is valid.

Theorem 2.2 [AH98] The invariant verification problem for modules is PSPACE-complete.

2.2.3 Single-step vs. multi-step verification

Consider a module P and an LTL formula ¢ over Xp. We denote by R(P. p) the
predicate defining the states of P that satisfy . That is. for any state s € Sp. we have
P.s &= ¢ iff Rp(¢)[s]. If ¢ = Oy. where v € P(Xp). then R(P.) can be computed by the
formula

Prep(w) = 3 Xp). (7 Aw').

The predicate Prep(w) is called the predecessor predicate. which defines the set of states
that can reach a w-state in exactly one step. We call this the one-step verification problem.
All other LTL verification problems can be solved by iterating. in an appropriate manner.
the solutions to the the one-step verification problems [EJ91]. We call them the multi-step

2

verification problems. For example. if o = Qu. where v € P(.Xp). then Algorithm 2.

computes the predicate R(P.¢):

Algorithm 2.2
Input: Module P and predicate w:.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. PRELIMINARIES 17

Output: Predicate R{P.Ouv) over Xp.
Initialization: Let Uy = .
Repeat: For k£ > 0. let
Uiy = Ui A Prep(Uy).
Until: Ui = Uy
Return: Ug.

Algorithm 2.2 computes successively computes the sequence U'y.U;.... of stronger pred-
icates: at the A-th iteration. predicate Uy defines the states that can stay in the set of
-states in at least & steps. R(P.) is therefore the conjunction of Uy. for all & > 0. At the
core of the Algorithm 2.2 is the iteration of the predecessor predicate Prep(p). All other

LTL formulas can also be computed in a similar fashion.

2.3 Controllability

We consider properties of open systems which interacts with its environment. An
environment for a module P is a non-blocking module E composable with P. We can view
the interaction between a module P and its environment as a game. At each round of the
game. the module P chooses the next values for output variables Op. while the environment
chooses the next values for the input variables Ip. The game then continues ad infinitum.
A key property of open systems is the notion of controllability: given an LTL specification
. we say that a state s of P is controllable with respect to ¢ if the environment can ensure
that all traces from s satisfy . For Moore moduies. the above definition can be formalized
using the notion of strategy. A module strategy = for P is a mapping 7 : Sp — States(Op)
that maps each finite sequence sg.sy.....: s, of module states into a state 7(sg.s1.....- k)
such that Tp{spUn’(sg.5¢.....: st)]- Similarly. an environment strategy n for P is a mapping
n:Sp = States(Ip) that maps each finite sequence of module states into a state specifying
the next values of the input variables. Given two states s; and s2 over two disjoint sets
of variables X; and X,. we denote by 5; XM s, the state over X| U X, that agrees with
sy and sy over the common variables. With this notation. for all s € Sp and all module
strategies @ and environment strategies . we define Outcome(s.7.n) € S§ to be the trace
50- 51.52.... defined by sq = 5 and by sp ., = 7(sg.51.....: sk) X rj(sg.51.....5%). Given an

LTL formula ¢ over Xp. the LTL control problem for P with respect to ¢ at a state s € Sp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. PRELIMINARIES 18

asks if there is an environment strategy n such that. for every module strategy =. we have
p[Outcome(s.w.n)]. If so. then we say that a state s € Sp is controllable with respect to
. We let the controllable predicate Ctr(P.p) be the predicate over Xp defining the set of

states of P controllable with respect to .

Theorem 2.3 [PR89a, AH98| The LTL control problem for modules is 2EXPTIME-

complete.

Unlike verification. the LTL control problem is easier if the LTL specification is restricted

to invariants.
Theorem 2.4 [AH98] The invariant control problem for modules is EXPTIME-complete.

Given a module P. a state s of P and an LTL formula ,» over Xp. we call the
LTL control problem for P w.r.t. o at s the one-step control problem if p = Ow for some
i € P(Xp): otherwise it is called the multi-step control problem. We let the controlluble
predecessor CPrep(y') be the predicate over Xp defining the set of states of P controllable
with respect to Ow. All multi-step LTL control problems can be solved by repeatedly
solving the appropriate one-step control problems. For example. for the invariant specifi-

cation ¢ = Ow. where ¢ € P(Xp) the following standard algorithin returns the predicate
Ctr(P.yp) [TW63. Bee80. RWS8T|:

Algorithm 2.3
Input: Module P and predicate 1.
Output: Predicate Ctr(P.Ow) over Xp.
Initialization: Let L) = .
Repeat: For k& > 0. let
Uit = Up A CPrep(Uy).
Until: U, = Uy

Return: ;.

Algorithm 2.3 computes a sequence Uy.U. 0. ... of increasingly strong predicates. For
k > 0. predicate U} defines the states from which it is possible to control P to satisfy
predicate p for at least & + | steps: at each iteration & > 0. Algorithm 2.3 lets Uy.; define
the set of states from which the environment can control P by ensuring that the predicate

UL is satisfied in the successor state.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2. PRELIMINARIES 19

[f the environment of P is a Moore module. then it must decide the next value for
the input variables before it can observe the next value of the output variables. Hence. to
define the controllable predecessor CPrep(p). then the environment must “play first.” that
Is.

CPrep(y) = 3(Op) .Y(Ip) . (tp = &)

The controllable predicate Ctr(P.) can also be computed by complementing the uncontrol-
lable predicate UCtr(P. p) which defines the set of uncontrolluble states. that is. those states
that are not controllable with respect to . The computation of UCtr(P.) involves iterat-
ing the uncontrolluble predecessor UPrep(¢) for a predicate v € P(Xp). Both UCtr(P. s)
and UPrep(if) are defined in Chapter 3.

For general modules. and in particular for reactive modules [AH99]. it is necessary
to modify the definition of the controllable predicate to enable the environment to observe
the next value of some output variables before choosing the next value of the input ones.

More details can be found in Chapter 5. Nonethess. Algorithun 2.3 remains the same.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Early Error Detection

Will you greet vour doom

As final: set him loaves and wine: knowing

The game is finished when he plays his ace.

And overturn the table and go into the next room?
— Philip Larkin (1922 1986)

3.1 Introduction

[t has been argued repeatedly that the main benefit of formal methods is falsifi-
cation. not verification: that formal analysis can only demonstrate the presence of errors.
not their absence. The fundamental reason for this is. of course. that mathematics can be
applied. inherently. only to an abstract formal model of a computing system. not to the
actual artifact. Furthermore. even when a formal model is verified. the successful verifica-
tion attempt is typically preceded by many iterations of unsuccessful verification attempts
followed by model revisions. Therefore. in practice. every fortnal method and tool is much
more often applied in situations where the outcome is failure (a counterexample). rather
than success (a correctness proof).

Yet most optimizations in formal methods and tools are tuned towards success. For
example. consider the use of BDDs and similar data structures in model checking. Because
of their canonicity. BDDs are often most effective in applications that involve equivalence
checking between complex boolean functions. Successful model checking is such an ap-
plication: when the set of reachable states is computed by iterating image computations.

successful termination is detected by an equivalence check (between the newly explored and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 21

the previously explored states). By contrast. when model checking fails. a counterexample
is detected before the image iteration terminates. and other data structures. perhaps non-
canonical ones. may be more efficient [BCCZ99]. To point out a second example. much ink
has been spent discussing whether “forward” or “backward™ state exploration is preferable
(see. e.g.. [HKQ98]). If we expect to find a counterexample. then the answer seems clear but
rarely practiced: the simultaneous. dove-tailed iteration of images and pre-images is likely
to find the counterexample by looking at fewer states than either unidirectional method.
Third. in compositional methods. the emphasis is almost invariably on how to decompose
correctness proofs (see. e.g.. [HQR98]). not on how to find counterexamples by looking at
individual system components instead of their product. In this work. we address this third
issue.

At first glance. it seems that only the least interesting of errors can be caught by
looking at a single component. as the more interesting errors typically involve the interac-
tion between multiple components. However. by precomputing information about individ-
ual components. we can detect errors that involve multiple components ecarlier and more
efficiently than would otherwise be possible.

To explain several fine points about our method. we need to be more formal. Recall
the definition of coutrollability of a module P in a game between P and its environment:
the moves of P cousist in choosing new values for the variables output by P: the moves of
the environment of P consist in choosing new values for the input variables of P. A state
s of P is controllable with respect to the invariant Oy if the environment has a strategy
that ensures that o always holds. Hence. if a state s is not controllable. we know that
P from s can reach a —g-state. regardless of how the environment behaves. The set Cp
of controllable states of P can be computed iteratively. using the standard algorithm for
solving safety games. which differs from backward reachability only in the definition of the
pre-image operator. Symmetrically. we can compute the set C¢ of controllable states of Q
w.r.t. O¢. Then. instead of checking that P || Q stays within the invariant O.. we check
whether P |j Q stays within the stronger invariant O(Cp A Cy). As soon as P || Q reaches
a state s that violates a controllability predicate. say. Cp. by retracing the computation of
Cp. taking into account also Q. we can construct a path of P| Q from s to a state ¢ that
violates the specification . Together with a path from an initial state to s. this provides a
counterexample to Ow. While the error occurs only at t. we detect it already at s. as soon

as it cannot be prevented. The method can be extended to arbitrary LTL requirements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION

1y
[

The notion of controllability defined above is classical. but it is often not strong
enough to enable the early detection of errors. To understand why. consider an invariant
that relates a variable r in module P with a variable y in module Q. for example by
requiring that £ = y. and assume that y is an input variable to P. Consider a state s.
in which module P is about to change the value of r without synchronizing this change
with Q. Intuitively. it seems obvious that such a change can break the invariant. and
that the state should not be considered controllable (how can Q possibly know that this is
going to happen. and change the value of y correspondingly?). However. according to the
classical definition of controllability. the state s is controllable: in fact. the environment
has a move (changing the value of y correspondingly) to control P. This example indicates
that in order to obtain stronger (and more effective) notions of controllability. we need to
compute the set of controllable states by taking into account the real capabilities of the other
modules composing the system. We introduce three such stronger notions of controllability:
constrained. lazy. and bounded controllability. Our experimental results demnonstrate that
there is a distinct advantage in using these stronger notions of controllability.

Lazy controllability can be applied to systems in which all the modules are lazy.
i.e.. if the modules always have the option of leaving unchanged the values of their output
variables [AH99]. Thus. laziness models the assumption of speed independence. and is used
heavily in the modeling of asynchronous systems. I[f the enviroument is lazy. then there
is no way of preventing the environment from always choosing its "stutter” move. Hence.
we can strengthen the definition of controllability by requiring that the stutter strategy
of the environment. rather than an arbitrary strategy. must be able to control. In the
above example. the state s of module P is clearly not lazily controllable. since a change of
z cannot be controlled by leaving y unchanged. Constrained controllability is a notion of
controllability that can be used also when the system is not lazy. Constrained controllability
takes into account. in computing the sets of controllable states. which moves are possible for
the environment. To compute the set of constrainedly controllable states of a module P. we
construct a transition relation that constrains the moves of the environment. This is done
by automatically abstracting away from the transition relations of the other modules the
variables that are not shared by P. We then define the controilable states by considering
a game between P and a so constrained environment. Finally. bounded controllability is a
notion that can again be applied to any system. and it generalizes both lazy and constrained

controllability. It considers environments that have both a set of unavoidable moves (such as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 23

the lazy move for lazy systems). and possible moves (by considering constraints to the moves.
similarly to constrained controllability). We also introduce a technique called iterative
strengthening. which can be used to strengthen any of these notions of controllability. In
essence, it is based on the idea that a module. in order to control another module. cannot
use a move that would cause it to leave its own set of controllable states.

We demonstrate the efficiency of the methods with two examples. a distributed
database protocol and a wireless communication protocol. In the first example. there are
two sites that can sell and buy back seats on the same airplane [BGMY2]. The protocol
aims at ensuring that no more seats are sold than the total available. while enabling the
two sites to exchange unsold seats. in case one site wishes to sell more seats than initially
allotted. The second example is from the Two-Chip Intercom (TCI) project of the Berkeley
Wireless Research Center [Cen. SdSJB™00. dSJSB~00]. The TCI network is a wireless local
network which allows approximately -0 remotes. one for each user. to transmit voice with
point-to-point and broadcast communication. The operation of the network is coordinated
by a base station. which assigns channels to the users through a TDMA scheme. [n both
examples, we first found errors that occurred in our initial formulation of the models. and
then seeded bugs at random. Our methods succeeded in reducing the number of global image
computation steps required for finding the errors. often reducing the maximum number of
BDD nodes used in the verification process. The methods are particularly effective when the
BDDs representing the controllable states are small in comparison to the BDD representing
the set of reachable states.

[t is worth noting that the technqiues developed in this chapter can also be nsed in
an informal verification environment: after computing the uncontrollability states for each
of the components. one can sirmulate the design and check if any of these uncontrollable
states can be reached. This is similar to the techniques retrograde analysis [YSAA9T]. or
target enlargement [YD98] in simulation. The main idea of retrograde analysis and target
enlargement is that the set of states that violate the invariants are “enlarged™ with their
preimages. and hence the chances of hitting this enlarged set is increased. Qur techniques
not only add modularity in the computation of target enlargemen. they also allow one to
detect the violation of liveness properties through simulation.

The algorithmic control of reactive systems has been studied extensively before
(see. e.g.. [RW89. EJ91. Tho95]). However. the use of controllability in automatic verifica-

tion is relatively new (see. e.g.. [KV96. AHK97]). The work closest to ours is [ASSSV94].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 24

where transition systems for components are minimized by taking into account if a state
satisfies or violates a given CTL property under all environments. In [Dil89]. autofailure
captures the concept that no environment can prevent failure and is used to compare the

equivalence of asynchronous circuits.

3.2 Early Detection of Invariant Violation

3.2.1 Forward and backward state exploration

Given a module R and a predicate £ over .Xg. the problem of invariant verification
consists in checking whether R &= Oy. We can solve this problem using classic forward or
backward state exploration. Forward exploration starts with the set of initial states of R.
and iterates a post-image computation. terminating when a state satisfving — has been
reached. or when the set of reachable states of R has been computed. In the first case we
an example of forward exploration. Backward exploration starts with the set - of states
violating the invariant. and iterates a pre-image computation. terminating when a state
satisfying Init p has been reached. or when the set of all states that can reach - has been
computed. Again. in the first case we conclude R ¥ O and in the second R = Oy, Hence.
the algorithm given in Section 2.2.3 can be seen as an example of backward exploration. If
the answer to the invariant verification question is negative. these algorithms can also con-
struct a ccunterexample sg.: sm of minimal length leading from sg = Initg to s, E .
and such that for 0 < i < n we have mg{s, Us,_]. If our aim is to find counterexamples
quickly. an algorithm that alternates forward and backward reachability is likelv to explore
fewer states than the two unidirectional algorithms. The algorithm alternates post-image
computations starting from Initp with pre-image computations starting from —¢. termi-
nating as soon as the post and pre-images intersect. or as soon as a fixpoint is reached.
We denote any of these three algorithms (or variations thereof) by InvCheck(R. 7). We
assume that nvCheck(R. o) returns answer YES or NO. depending on whether R = Oy or

R ¥ Oyp. along with a counterexample in the latter case.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION

[
w

3.2.2 Controllability and early error detection

n
=1

Given n > 1 modules P.P,.....P, and a predicate ¢ € P(|J_, Xp,). the modular
version of the invariant verification problem consists in checking whether P || --- || P, E
Oy. We can use the notion of controllability to try to detect a violation of the invariant
¢ in fewer iterations of post or pre-image computation than the forward and backward
exploration algorithms described above. The idea is to pre-compute the states of each
module Py..... P, that are controllable w.r.t. Ow. We can then detect a violation of the
invariant as soon as we reach a state s that is not controllable for some of the modules.
rather than waiting until we reach a state actually satisfying -@. In fact. we know that
from s there is a path leading to -y in the global system: for this reason. if a state is not
controllable for some of the modules. we say that the state is doomed.

To implement this idea. let R = P || --- || Py. and for 1 €0 < n. let abs,(p) =
3(Xr\ Xp). ¢ be an approximation of ¢ that involves only the variables of P,: note that
£ — abs,(w). Foreach | < i < n. we can compute the set Ctr(P,.Qabs,()) of controllable
states of P, w.r.t. Qebs, () using a classical algorithm for safety games. For a module P. the
algorithm uses the uncontrollable predecessor operutor UPrep : P(Xp) — P(Xp). detined

by

UPrep(X) =VYIp.30p . (7p A X').
The predicate UPrep(.X) defines the set of states from which. regardless of the move of the
environment. the module P can resolve its internal nondeterminism to make X true. Note
that a quantifier switch is required to to compute the uncontrollable predecessors. as opposed
to the computations of pre-images and post-images. where only existential quantification is
required. For a module P and an invariant Op. we can compute the set Ctr(P.Oyp) of con-
trollable states of P with respect to Op. by negating the set UCtr(P.QOy) of uncontrollable

states. which can be computed using the following algorithm:

Algorithm 3.1

Input: Module P and predicate ¢ over Xp.
Output: Predicate UCtr(P.0O).
Initialization: Let Uy = —¢.

Repeat: For & > 0. let Uy = mp Vv UPrep(L7y)
Until: Uy, = Us.

Return: U;.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 26

For k£ > 0 the set Ui consists of the states from which the environment cannot prevent
module P from reaching —y in at most & steps. Note that for all | <i < n. the computation
of Ctr(P;.0abs;(yp)) is carried out on the state space of module P;. rather than on the
(larger) state space of the complete system. We can then solve the invariant checking

problem P, || --- || P, & Oy by executing
[nvCheck(Pl -l Pae @A /\ Ctr(P,.Elabsl(c;:))) . (3.1)
1=0

It is necessary to conjoin ¢ to the set of controllable states in the above check. because

for | < { < n. predicate abs;(yv) (and thus. possibly. Ctr(P,.Qabs,(¢))) may be weaker

than . If check (3.1) returns answer YES. then we have immediately that P || --- || P, E
Og. [f the check returns answer NoO. we can conclude that P || --- || P, ¥ QOg. In this
latter case. the check (3.1) also returns a partial counterexample sy.s)...... Sm. With s, B

Ctr(P,.Qyp,) forsome | < j < n. If s, = -e. this counterexample is also a counterexample
to Oy. Otherwise. to obtain a counterexample sy.....: T N P Smer With s B .
we proceed as follows. Let Uy.0l5..... Ui be the predicates computed by Algorithmn 3.1
during the computation of Ctr(P,.0yp,): note that s, = Uy, For [> 0. given sy . we

pick 54 such that sy = Uk and (s Us),) EA

i, 7p,- The process terminates
as soon as we reach an [such that s,,.; &= —-@: since the implication 'y — -¢ holds. this
will occur in at most & steps. In the actual implementation. the state s,,.; is obtained by
a game played between module P, and the team comprising modules P,. for i # j. During
round 0 < [< k. the state s,,.; is obtained from s,,.,_| in two steps: First. an evaluation
t € States(U;=, Xp, \Op,) is chosen such that (sp_ Ut') |= 7p, forevery 1 <i<n. i # j.
Second. an evaluation u € States(Op, is chosen in such a way that (s, Uu') = 7p, and

t X uk= Uk_;. Then we have 5,1 =t X u.

3.3 Lazy and Constrained Controllability

In the previous section. we have used the notion of controllability to compute sets
of doomed states. from which we know that there is a path violating the invariant. In order
to detect errors early. we should compute the largest possible sets of doomed states. To
this end. we introduce two notions of controllability that can be stronger than the classical
definition of the previous section. The first notion. lazy controllability. can be applied to

systems that are composed only of lazy modules. i.e. of modules that need not react to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 27

their inputs. Several communication protocols can be modeied as the composition of lazy

modules. The second notion. constrained controllability. can be applied to any system.

3.3.1 Lazy controllability

A module is lazy if it always has the option of leaving its output variables un-
changed. Formally. a module P is lazy if we have (s U s') = 7p for every state s over Xp.
If all the modules composing the system are lazy. then we can re-examine the notion of
controllability described in Section 3.2 to take into account this fact. Precisely. we defined
a state to be controllable w.r.t. an LTL property o if there is a strategy for the environ-
ment to ensure that the resulting trace satisfies . regardless of the strategy used by the
system. But if the environment is lazy. we must always account for the possibility that the
environment plays according to its lazy strategy. in which the values of the input variables
of the module never change. Hence. if all modules are lazy. there is a second condition
that has to be satisfied for a state to be controllable: for every strategy of the module. the
lazy environment strategy should lead to a trace that satisties 2. It is easy to see. however.
that this second condition for controllability subsumes the first. We can summarize these
considerations with the following definition. For 1 < i < n. denote by nf the lazy envi-
ronment strategy of module P,. which leaves the values of the input variables of P, aiways
unchanged. We say that a state s € Sp, is lazily controllable with respect to a LTL formula
o iff. for every module strategy 7. we have Qutcome(s.7.nf) = . We let LCtr(P.2) be
the predicate over Xp defining the set of states of P that are lazily controllable with respect
to .

We can compute for the invariant O the predicate LCtr(P.3Qy) by replacing the
operator ['Pre in Algorithm 3.1 with the operator LUPre : P(Xp) — P(Xp). the luzily

uncontrollable predecessor operator. defined by:
LUPrep(X) =30% . (rp A X")Ip/Ip] .

where (7p A X')[Ip/Ip] is obtained from 7p A X' by replacing each variable £/ € [p
with r € [p. Note that LUPrepX computes a superset of U'PrepX. and therefore the
set LCtr(P.Qy) of lazily controllable states is always a subset of the controllable states
Ctr(P.Oyw).

Given n > | lazy modules Py. Ps..... P, and a predicate ¢ € P(J_, Xp,). let
R = P||---|| Pa. and for all 1 < ¢ < n. We can check whether P, || --- || P, &= Oy by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 28

executing InvCheck(R. o A \]—, LCtr(P,.Qabs,(y))). If this check returns answer No. we

can construct a counterexample to Oy as in Section 3.2.

3.3.2 Constrained controllability

Consider again n > 1 modules P, P..... P,. together with a predicate ¢ €
P(Ur_, Xp,). In Section 3.2. we defined a state to be controllable if it can be controlled by
an unconstrained environment. which can update the input variables of the module in an
arbitrary way. However. in the system under consideration. the environment of a module
PisQ =P - - | Pt | Psr]l -+ || Pa. for 1 < ¢ < n. This environment cannot update
the input variables of P, in an arbitrary way. but is constrained in doing so by the tran-
sition predicates of modules P,. for | < j < n. j # i. If we compute the controllability
predicate with respect to the most general environment instead of Q,. we are giving to
the environment in charge of controlling P, more freedom than it really has. To model
this restriction. we can consider games in which the environment of P, is constrained by a
transition predicate over Xp U [}, that over-approximates the transition predicate of Q,.
We rely on an over-approximation to avoid mentioning all the variables in U7=1 Xp,. since
this would enlarge the state space on which the controllability predicate is computed.

These considerations motivate the following definitions. Consider a module P
together with a transition predicate H over Xp U [. An H-constrained strategy for the
environment of P is a strategy n : Sp — States(Ip) such that. for all so.5(.... .. sk € Sp.
we have (s Un (sq.50.....3 st.)) B H. Given an LTL formula p over Xp. we say that a state
s € SP is H-controllable if there is an H-counstramed environment strategy n such that.
for every module strategy . we have Outcome(s.7w.n) = 2. We let CCtr(P. {H)Y)¢) be the
predicate over Xp defining the set of H-controllable states of P w.r.t. ».! For invariant
properties. the predicate CCtr(P. {H))@Gy) can be computed by replacing in Algorithm 3.1
the operator UPre with the operator CUPrep[H] : P(Xp) — P(Xp). defined by:

CUPrep{H|(X) = V1o . (H = 30% . (tp A X)) .

When H = true. CUPrep[H|(X) = UPrep(X): for all other stronger predicates H. the H-

uncontrollable predecessor operator CUPrep[H](X) will be a superset of ['Prep(.X). and

'If Ex is a module composable with P having transition relation H. the predicate CCtr(P. {H))) defines
exactly the same set of states as the ATL formula {E)O interpreted over Pl| Ey [AHK97].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 29

therefore the set CCtr(P. (H))) of H-controllable states will be a subset of the controllable
states Ctr(P.0Oyp).
Given a system R = P\||]]...]|| P, and a predicate ¢ € P(Xg). for 1l i< n we
let
Hl = AJE{["}\{'}B}I-’] . 3}/; . TPJ

where Y, = Xp \ Xp,. Then we can check whether R = Op by executing InvCheck(R. p A
Ai=, CCtr(P,. (H,)Tubs,())). If this check returns answer NO. we can construct a coun-

terexample proceeding as in Section 3.2.

3.4 Experiments

We applied our methods for early error detection to two examples: a distributed
database protocol and a wireless communication protocol. We implemented all algorithms
on top of the model checker MocHA [AHM*98]. which relies on the BDD package and

image computation engine provided by VIS [BHSV ~96].

3.4.1 Demarcation protocol

The demarcation protocol is a distributed protocol for maintaining numerical
constraints between distributed copies of a database [BGM92]. We considered an instance
of the protocol that manages two sites that sell and buy back seats on the same airplane:
each site is modeled by a module. [n order to minimize communication. cach site maintains
a demarcation variable indicating the maximum number of seats it can sell autonomously:
if the site wishes to sell more seats than this limit. it enters a negotiation phase with the
other site. The invariant states that the total number of seats sold is always less than the
total available.

In order to estimate the sensitivity of our methods to differences in modeling style.
we wrote three models of the demarcation protocol: the models differ in minor details. such
as the maximum number of seats that can be sold or bought in a single transaction. or the
implementation of the communication channels. I[n all models. each of the two modules
controls over 20 variables. and has 8-10 input variables: the diameter of the set of reachable
states is between 80 and 120. We present the number of iterations required for finding

errors in the three models using the various notions of controllability in Table 3.1. Some of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 30

Error LI C| R} G Error L{iC| R} G Error L|Cl| R} G
el 191191924 el 3013035 35 el 14 [18| 18] 18
e2 31 {31 [31] 36 e2 4040 | 44 | 44 e2 14 (18] 18118
e3 1911919 |24 el 28 | 28 | 33 | 33 el 14 I8 I8} 18
e4 18 | 23 | 24 | 24 ed 18|18 }125 |25 ed 1211616 16

(a) Model 1. (b) Model 2. (c) Model 3.

Table 3.1: Number of iterations required in global state exploration to find errors in 3
models of the demarcation protocol. The errors are el.....ed. The columns are L (lazy con-
trollability). C (constrained controllability). R (regular controllability). and G (traditional
global state exploration).

the errors occurred in the formulation of the models. others were seeded at random.

3.4.2 Two-chip intercom

The second example is from the Two-Chip Intercom (TCI) project of the Berkeley
Wireless Resecarch Center [Cen. SdSJB~00. dSJSB*00]. TCI is a wireless local network
which allows approximately 40 remotes to transmit voice with point-to-point and broadcast
communication. The operation of the network is coordinated by a base station. which
assigns channels to the remotes through a TDMA schemne. Each remote and base station
will be implemented in a two-chip solution. one for the digital component and one for the
analog. The TCI protocol involves four layers: the functional layer (UI). the transport layer.
the medium access control (MAC) layer and the physical layer. The Ul provides an interface
between the user and the remote. The transport layer accepts service requests from the Ul
defines the corresponding messages to be transmitted across the network. and transmits the
messages in packets. The transport layer also accepts and interprets the incoming packets
and sends the messages to the UL The MAC layer implements the TDMA scheme. The
protocol stack for a remote is shown in Figure 3.1(a). Each of these blocks are described
by the designers in Esterel and modeled in Polis using Codesign Finite State Machines
[BCG97].

There are four main services available to a user: ConnReq. AddReq. RemReq and
DiscReq. To enter the network. a remote sends a connection request. ConnfReq. together
with the id of the remote. to the base station. The base station checks that the remote is

not already registered. and that there is a free time-slot for the remote. [t then registers

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 31

Error LI C| R} G

el 24 [25 27 | 27

e2 39 [41] 41 | 41

el 16 { 21 {23 | 23

e 24 125 | 27 | 27

Timebase ed 37 139 | H9 | 39

cre_] e6 | 16 | 19|21 |21

l.o.\lbpsi @L 1 6Mbps

Tx_data Rx_data (b) Iterations

(a) Protocol Stack.

Figure 3.1: The TCI protocol stack and the number of iterations of global state exploration
to discover the error.

the remote. and sends a connection grant back to the the remote. If a remote wishes to
leave the network. it sends DiscReq to the base station. which unregisters the remote. [f
two or more remotes want to start a conference. one of them sends AddReq to the base
station. together with the id’s of the remotes with which it wants to communicate. The
base station checks that the remotes are all registered. and sends to each of these remotes
an acknowledgment and a time-slot assignment for the conference. When a remote wishes
to leave the conference. it sends a RemReq request to the base station. which reclaims the

time slot allocated to the remote.

We consider a TCI network involving one remote and one base station. The invari-
ant states that if a remote believes that it is connected to the network. then the base station
has this remote registered. This property involves the functional and transport layers. In
our experiment. we model the network in reactive modules [AH99] The modules that model
the functional and transport layers for both the remote and the base station are translated
directly from the corresponding CFSM models: based on the protocol specification. we pro-
vide abstractions for the MAC layer and physical layer as well as the channel between the
remote and the base station. Due to the semantics of CFSM. the modules are lazy. and
therefore. lazy controllability applies. The final model has 83 variables. The number of
iterations required to discover the various errors. some incurred during the modeling and

some seeded in. are reported in Figure 3.1(b).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 32

3.4.3 Results on BDD sizes and discussion

In order to isolate the unpredictable effect of dynamic variable ordering on the
BDD sizes. we conducted. for each error. two sets of experiments. In the first set of exper-
iments. we turned off dynamic variable ordering. but supplied good initial orders. In the
second. dynamic variable ordering was turned on. and a random initial order was given.
Since the maximum BDD size is often the limiting factor in formal verification. we give
results based on the maximum number of BDD nodes encountered during verification pro-
cess. taking into account the BDDs composing the controllability predicates. the reachability
predicate. and the transition relation of the system under consideration. We only compare
our results for the verification using lazy controllability and global state exploration. since
these are the most significant comparisons. The results for model 3 of the demarcation
protocol as well as the TCI protocol are given.
Without dynamic variable ordering. For each error. we recorded the maximum number of
BDD nodes allocated by the BDD manager encountered during verification process. The
results given in Table 3.2(a) and 3.2(b) are the averages of four experiment runs. each with a
different initial variable order. They show that often the computation of the controllability
predicates helps reduce the total amount of required memory by about 10-20%. The reason
for this savings can be attributed to the fact that fewer iterations in global state exploration

avoids the possible BDD blow-up in subsequent post-image computation.

With dynamic variable ordering. The analysis on BDD performance is more difficult if dy-
namic variable ordering is used. We present the results in Tables 3.2(c) and 3.2(d) which
show the averages of nine experiment runs on the same models with dynamic variable order-
ing on. Dynamic variable ordering tries to minimize the total size of all the BDDs. taking
into account the BDDs representing the controllability and the reachability predicates. as
well as the BDDs encoding the transition relation of the system. Hence. if the BDDs for
the controllability predicates are a sizeable fraction of the other BDDs. their presence slows
down the reordering process. and hampers the ability of the rcordering process to reduce
the size of the BDD of the reachability predicate. Thus. while our methods consistently
reduce the number of iterations required in global state exploration to discover the error.

occasionally we do not achieve savings in terms of mermory requirements.

When the controllability predicates are small compared to the reachability predi-

cate. they do not interfere with the variable ordering algorithm. This observation suggests

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 33

the following heuristics: one can alternate the iterations in the computation of the control-
lability and reachability predicates in the following manner. At each iteration. the iteration
in the controllability predicate is computed only when its size is smaller than a threshold
fraction (say. 50%) of the reachability predicate. Otherwise. reachability iterations are car-
ried out. Another possible heuristics to reduce the size of the BDD representation of the
the controllability predicates is to allow approximations: our algorithms remain sound and

complete as long as we use over-approximations of the controllability predicates.

3.5 Bounded Controllability and Iterative Strengthening

3.5.1 Bounded controllability

In lazy controllability. we know that there is a move of the environment that is
always enabled (the move that leaves all input variables unchanged): therefore. that move
must be able to control the module. In constrained controllability. we are given the set of
possible environment moves. and we require that one of those moves is able to control the
module. We can combine these two notions in the definition of hounded controllability. In
bounded controllability. unlike in usual games. the environment may have some degree of
insuppressible internal nondeterminism. For each state. we are given a (nonempty) set A of
possible environment moves. as in usual games. I[n addition. we are also given a (possibly
empty) set B C A of moves that the environment can take at its discretion. even if they are
not the best moves to control the module. We say that a state is houndedly controlluble if
(a) there is a move in A that can control the state. and (b) all the moves in B can control
the state. The name bounded controllability is derived from the fact that the sets B and A
are the lower and upper bounds of the internal nondeterminism of the controller.

Given a module P. we can specify the lower and upper bounds for the environment
nondeterminism using two predicates H!. H* € P(XpuUlp). We can then define the bounded

uncontrollable predecessor operator BUPre[H'. H*] : P(Xp) — P(Xp) by
BUPre[H'. H*|(X) = [w;, (H* = 30} . (tp A .\"))] y [31;3 (H'ATOb . (7p A X’))] .

Note that the quantifiers are the duals of the ones in our informal definition. since this
operator computes the uncontrollable states. rather than the controllable ones. Note also
that in general we cannot eliminate the first disjunct. unless we know that 3, . H ! holds

at all s € §;,,p. as was the case for lazy controllability. By substituting this predecessor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 34

operator to UPre in Algorithm 3.1. given a predicate o over Xp. we can compute the
predicate BCtr[H'. H*](P.0Oy) defining the states of P that are boundedly controllable
w.r.t. Jy. Given a system R = P || --- || P, and a predicate ¢ over Xg. we can use
bounded controllability to compute a set of doomed states as follows. For each 1 < i < n.

we let as usual abs, () = 3(Xg\ Xp,) . ¢. and we compute the lower and upper bounds by

{ - - u - - -
Hl =AJ‘_:{1 n}\(i}VYJ',.B}’J'J.TPJ . Hl =A_}E{l‘..ull}\\{l}ayj‘l'3)_1(1' IP] .
where for 1 < j < n. theset Y,, = Xp, \ Xp, consists of the variable of P, not present in
P,. Then we have R |= Oy iff the check InuCheck(R.o A A, BCtr(H!. H*|(P..Qabs,(¢)))
returns YES. If this check fails. we can construct counterexamples by proceeding as in

Section 3.2.

3.5.2 [Iterative strengthening

We can further strengthen the controllability predicates by the process of iterative
strengthening. This process is based on the following observation. In the system R =
Pi]| --- || Py. in order to control P,. the environment of P, must not only take transitions
compatible with the transition relation of the modules P,. for j € {L..... n}\{c}. but these
modules must also stay in their own sets of controllable states. This suggests that when
we compite the controllable states of P,. we take into account the controllability predicates
already computed for the other modules. For | < i < n. if §, is the controllability predicate

of module P,. we can compute the upper bound to the environment nondeterminism by
N - -1 S NG
Hlu(l)) zA]é{l.....n}\(z}E}J-l'3}1.1'(71’, /\(), /\(),) .

where § = §y..... dn. For all 1 < i < n. we can compute a sequence of increasingly strong
controllability predicates by letting 6% = T and. for & > 0. by rif"l = BCtr[H!. H*(0")|(P.. O¢).
Forall 1 <i < nand all & > 0. predicate (5{"1 is at least as strong as :)'f. We can terminate
the computation at any & > 0 (reaching a fixpoint is not neederd). and we can verify R = Op
by executing nvCheck(R.¢o A A}, :)'f). As k increases. so does the cost of computing these
predicates. However. this increase may be offset by the faster detection of errors in the

global state-exploration phase.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY ERROR DETECTION 35

3.5.3 Discussion

The early error detection techniques presented in the previous sections for invari-
ants can be straightforwardly extended to general linear temporal-logic properties. Given a
system R = Py || --- || P, and a general LTL formula ¢ over Xp. we first compute for each
1l < i < n the predicate d,. defining the controllable states of P, with respect to). This
computation requires the solution of w-regular games (EJ91. Tho95]: in the solution. we can
use the various notions of controllability developed in this chapter. such as lazy. constrained.
or bounded controllability. Then. we check whether R = & AQ(AL, 4,): as before. if a state
that falsifies d; for some 1 < i < n is entered. we can immediately conclude that R & .
For certain classes of properties. such as reachability properties. it is convenient to perform
this check in two steps. first checking that R &= (AL, 4,) (enabling early error detection)

and then checking that R = .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3. EARLY

ERROR DETECTION

Lazy Global
Err Control | Total Total
el || 4.4 (0.8) | 6.6 (0.1) 7.9 (0.8)
e2 || 4.1 (0.1) | 7.2 (0.6) 9.2 (2.4)
ed || 4.4 (0.1) 9.0 (0.3) | 14.6 (0.3)
el || 7.3 (0.9)] 87 (0.1) || 1I.1 (2.1)
(a) Demarcation Protocol (Off).
Lazy Global
Err Control | Total Total
el || 1.8 (0.4) 6.3 (0.4) 6.7 (0.9)
e2 |[5.4 (0.6) 8.6 (0.5) 9.0 (0.4)
e3 || 5.8 (0.4) 6.9 (1.0) 7.7 (1.6)
ed || 2.4 (0.1) | 1O (0.1) || 12.0 (0.3)
ed || 6.6 (0.5) { 40.7 (L1.8) {| 43.8 (0.2)
e6 || 5.6 (0.6) 6.8 (1.6) T (LY)
(b) TCI (Otf).
Lazy Global
Err Control | Total Total
el [3.0 (0.4)]6.9 (0.7) 7.5 (0.4)
e2 || 3.5 (L.0) 6.7 (0.4) 3.1 (0.8)
ed || 3.6 (0.5) | 8.9 (L3) | 12.7 (1.9)
ed |44 (0.4) 9.0 (09) | 11.3 (2.6)
(¢) Demarcation Protocol (On).
Lazy Global
Err | Control | Total Total
el || 4.2 (0.9) 7.2 (0.8) 7.3 (0.9)
e2 || 3.7 (0.6) | 10.1 (2.4) || 11.0 () 3)
el I 1.5 (0.3) 74 (1.9) 6.4 .6)
el | 3.8 (0.3) 1114 (2.9) | 16.9 :.4)
ed || 4.0 (0.4) { 60.2 (19.1) || ¥3.7 (29.8)
e6 || 4.6 (0.3) 7.9 (0.9) 6.8 (0.9)

Table 3.2: Average maximum number of BDD nodes required for error detection during the

(d) TCI (On).

controllability (Control) and reachability computation (Total) phases.

the standard deviations are given in parenthesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dynamic variable
ordering was turned off in (a) and (b). and on in (c¢) and (d). The results are given for lazy

controllability and global state exploration. All data are in thousands of BDD nodes. and

Chapter 4
Automatic Proof Decomposition

4.1 Introduction

The single largest obstacle to the use of automatic methods in system verification
is the state-explosion problem. which is the exponential increase in the number of system
states caused by a linear increase in the number of system components or variables. Modular
verification techniques attempt to overcome the state-explosion problem by exploiting the
modular structure naturally present in most system designs. The basic idea is to analyze
each module of the system separately. perhaps together with an environment that represents
a simplified model of the rest of the system: the results obtained for the individual modules
are then combined into a single result about the compound system. Unlike other tasks in
the verification of finite-state systems. which have been largely automated. current modular
verification techniques still rely heavily on user guidance. Aside from deciding how to break
up a system into mocules. the user also has to specify the environment in which to study
each module. which is usually a difficult task. In this chaper. we present an approach to
modular verification that is almost entirely automatic. leaving to the user only the task of
specifying which variables of a module should be relevant to the other modules.

For each concrete module. we erase some variables to construct an abstract mod-
ule. which has a smaller state space: the abstract module is then used to replace the concrete
module in the verification process. If this approach is pursued naively. typically one of two
things happens. Either one abstracts only variables that do not influence the property to
be verified. which is certainly prudent but more often than not leads to insufficient sav-

ings. or one abstracts variables that do influence the desired property. in which case the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 38

abstract module may violate the property even though the concrete module does not. We
take the second route. but use additional information about the concrete module in order to
construct more useful abstractions than could be achieved by simply erasing variables. [n
the most basic variation of our method. we use reachability information about the concrete
module when erasing variables to construct an abstraction. In a more advanced variation.
we also use controllability information about the concrete module with respect to the desired
property. In all cases. the additional information we use can be obtained fully automatically
by looking only at individual modules and the property to be verified —there is no need to
involve the compound system. Our experimental results indicate that the use of reachabil-
ity and controllability information can lead to dramatic improvements in verification: the
resulting module abstractions are often much smaller than the concrete modules yet still
preserve the desired property.

For the sake of simplicity. we describe systems as the parallel compaosition of one
or more non-blocking Moore modules. for which the outputs during a transition depend
only on the source state of the transition. Our approach can be adapted with only minor
modifications to Mealy-type modules. such as the reactive modules of [AH99]. We consider
the verification of invariance properties. An invariance property for the module P is specified
by an invariant predicate » over Xp. The module P satisfies the invariant predicate .
written P k= Og. if P never leaves the set of states defined by .

Consider a system P |} Q consisting of two modules P and Q. and a desired in-
variant predicate o for P|| Q. To check if P||Q & O¢ without constructing the global
state space of P || (Q. we can remove a subset Yp C Xp of the variables of P and a subset
Yo € Xp of the variables of Q. Formally. the abstract module (3Yp.P) = (Op \ Yp.[p \
Yp.3Yp . Initp.3Yp3Y), . 7p) is constructed by existentially quantifying the removed vari-
ables in the initial and transition predicates: we say that (3Yp.P) is obtained by erasing
from P the variables in Yp. Then we can attempt to use the following standard inference

rule:
(3Yp.P) [(3Y0.Q) = Oy
PIlQ = Oy

(4.1)

This rule is sound. because every reachable state of the concrete system P || Q corresponds
to a reachable state of the abstract system (3Yp.P) || (3Yg.Q). The efficiency advantage of
the rule stems from the fact that the premise involves fewer variables than the conclusion.

reducing the size of the state space to be explored. However. the premise may fail even

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 39

though the conclusion holds. because there may be many reachable states of the abstract
system that do not correspond to reachable states of the concrete system. In fact. it is often
impossible to choose suitable. reasonable large sets Yp and Y. because modular designs
aggregate naturally within each module only closely interdependent variables. By erasing
such dependencies between variables. the number of transitions of the abstract system grows
quickly to the point of violating all but trivial invariants. Our goal is to confine this growth
in abstract transitions by utilizing additional information about the component modules P
and Q.

More precisely. a state s of P can be written as a pair s = (54. 5,). where s, is a
state over the set Xp\ Yp of variables. and s, is a state over the set Yp of erased variables.
The abstract module (3Yp.P) contains a transition from source state s, to destination
state s, iff the concrete module P contains a transition from (s,. s,) to (s1,.5%.) for some s,
and si.. As a first improvement. we can include a transition from s, to s/, in the abstract
module only if. for some s, and s.. there is a transition from (s,. 5,) to (s,.s].) in the con-
crete module and the state (sq. s,) is reachable in the concrete module. This is because it
is certainly not useful to include abstract transitions that have no reachable concrete coun-
terparts. To this end. we compute a predicate Reach(P) over Xp that defines the reachable
states of P. The predicate Reach(P) can be computed using standard state-space explo-
ration (symbolic or enumerative). Our experiments based on symbolic methods indicate that
this computation is efficient. since the module P is considered in isolation. From the predi-
cate Reach(P) we construct the module (P & Reach(P)) = (Op. Ip.. Initp.7p A Reach(P)).
which is like P. except that it allows ounly transitions from reachable states. After erasing
the variables in Yp. we obtain the abstract module (3 Yp.(P & Reach(P))). In a similar way.
we compute the reachability predicate Reach(Q) for Q and construct the abstract module
(3Yo.(Q & Reach(Q))). To complete the verification process. we then use the following rule:

(FYp.(P & Reach(P))) || (3Yo.(Q & Reach(Q))) = Oy
PllQEQy
Since the systems P Q and (P & Reach(P)) | (Q & Reach(Q)) have the same reachable

states. rule (4.2) is sound. As we shall see. unlike the simplistic rule (4.1). the improved

(4.2)

rule (4.2) can often be successfully applied even when the sets Yp and Yy include vari-
ables that contribute to ensure the invariant ©. Yet the savings in checking the premise of
rule (4.2) are just as great as those for checking the premise of the earlier rule (4.1). because

the same sets of variables are erased. In other words. (3Yp.(P & Reuch(P))) || (3Yq-(Q & Reach(Q)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 40

is a more accurate but no more detailed abstraction of P||Q than is (3Yp.P) ! (3Y.Q).
In our experiments we shall obtain dramatic resuits by applying rule (4.2) with the simple
heuristics of erasing those variables that are not involved in the communication between P
and . While reachability information is often used in algorithmic verification. the nov-
elty of rule (4.2) consists in the use of such information for the modular construction of

abstractions.

The effectiveness of a rule such as (4.1) or (4.2} is directly related to the number of
variables that can be erased in a successful application of the rule. Rule (4.2) improves on
rule (4.1) by using reachability information about the individual modules in the construc-
tion of the abstractions. which usually permits the erasure of more variables. It is possible
to further improve on the rule (4.2) by using. in addition to reachability information. also
information about the controllability of the individual modules with respect to the specifica-
tion O¢. This improvement is based on the following observation. The predicate Reach(P)
used in (4.2) defines the reachable states of P when P is in a completely general environ-
ment. However. the module P may exhibit anomalous behaviors in a completely general
environment: in particular. more states may be reachable under a completely general en-
vironment than under the specific environment provided by Q. Of course. we do not want
to compute the reachable states of P when P is composed with @Q: doing so would require
the exploration of the state space of the global system P || Q. which is exactly what our
modular verification rules try to avoid. To study the module P under a suitable confining
environment. while still avoiding the exploration of the global state space. we consider the
module P in the most general environment E that ensures the invariant o: that is. E is
the least restrictive module such that P|| E &= Og. In practice. we need not construct E
explicitly. but compute only the predicate Dp that defines the set of reachable states of
P|| E. Since E is more restrictive than the completely general environment. the predicate
Dp is stronger than Reach(P). and the implication Dp — Reach(P) holds. The algorithm
for computing Dp follows from the standard game-theoretic algorithm for computing the
set of states of the module P that are controllable with respect to the invariant : it can

be implemented symbolically or enumeratively. with a time complexity that is linear in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 41

size of the state space of P [Bee80]. This leads to the following modular verification rule:

(Initp A Initg) — (Dp A D)

P|(3Y0.(Q& Dg)) =0Dp

QI (3Yp.(P& Dp)) = 0ODq
PllQE Qg

where Yp € Xp and Yy C Xg. The soundness of this rule depends on an inductive

(4.3)

argument. and it will be proved in detail in the rest of the chapter. Essentially. the first
premise ensures that the modules P and Q are initially in states satisfying Dp A Dg. The
second premise shows that. as long as Q does not leave the set defined by Dg. the module P
will not leave the set defined by Dp: the third premise is symmetrical. As the implications
Dp — ¢ and Dg — ¢ hold. the three premises lead to the conclusion. The rule is in
fact closely related to inductive forms of assume-guarantee reasoning [Sta85. AL95. AH99.
MeM9T]. The use of the stronger predicates Dp and Dy in the second and third premises
of the rule (4.3) potentially enables the erasure of more variables compared to the earlier
rule (-1.2). However. in rule (4.3) this erasure can take place only on one side of the parallel
composition operator or. in the case of multi-module systems. for all modules but one.
While automatic approaches to the construction of abstractions for model check-
ing have been proposed. for example. in [Kur94. Dam96. GS97. CC99]. these approaches
do not exploit reachability and controllability information in a modular fashion. In partic-
ular. instead of the standard principle “first abstract. then model check the abstraction.”
our approach follows the more refined principle ~first model check the components. then
use this information to abstract. then model check the compound abstraction.” In this
way. our modular verification rules are doubly geared towards automatic verification meth-
ods: state-space exploration is used both to compute the reachability and controllability
predicates. and to check all temporal premises (those which contain the = operator). It
is worth pointing out that nontemporal premises would result in rules that are consid-
erably less powerful. For example. suppressing variable erasures. the temporal premise
(P & Reach(P)) || (Q & Reach(Q)) &= O of rule (4.2) is weaker than the two nontemporal
premises Initp A Initg — ¢ and p A Reach(P) A 7p A Reach(Q) A rg — " would be (here. &
results from by replacing all variables with their primed versions). Similarly. the second
premise of rule (4.3) is weaker than the two nontemporal premises Initp A Initg - Do ADp

and Dp A 7p A Dg A 1@ — D', would be. It is easy to find examples where our temporal

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 42

premises apply. but their nontemporal counterparts do not.

4.2 Overview and Additional Definitions

4.2.1 Chapter Overview

We develop the technical details of the proposed modular verification rules in
Section 4.3. The verification rules have been implemented on top of the MOCHA model
checker [AHM™98|. using BDD-based fixpoint algorithms for the computation of the reach-
ability and controllability predicates. In Section 4.4 we discuss the implementation of the
verification rules. and we describe the script language we devised in order to be able to ex-
periment efficiently with various modular verification techniques. In Section 4.5 we present
experimental results for three examples: an instance of the demarcation protocol described
in Section 3.4.1 a token-ring arbiter. and a sliding-window protocol for data communica-
tion [Hol91l]. We conclude with some insights gathered in the course of the experimentation

with the proposed verification rules.

4.2.2 Additional Definitions

We restrict our presentation to Moore modules. that is. the variables in I}, do not
appear in 7p and therefore the next value of the output variables can depend on the present
value of the input variables. but not on their next value. This restriction will simplify the
notation of subsequent sections. Nevertheless. all the results of this chapter can be adapted
to the case of Mealy modules. in which the next values of the output variables can depend
also on the next values of the input variables. Moreover. the modules we defined do not have
private variables. that is. the values of all their variables can be inspected by other modules.
While this restriction simplifies the presentation of the results. all the techniques we present
in this chapter can be applied to modules with private variables simply by disregarding the
information of which output variables are private. and which are visible from other modules.
However. Proposition 4.1 and the completeness part of Proposition 4.2 need modifications
if modules can have private variables.

Given a module P = (Op. [p. Initp. 7p) and an LTL formula P over the set Xp of

module variables. we write P = ¢ iff P.s = ¢ for all state s = Initp. Given any predicate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 43

H over Xp. we denote by
(P& H) = (op. Ip. Initp A H. tp A H)

the module like P. except that only transitions from states that satisty H are allowed.

Given a module P and a set Y of variables. we let
(3Y.P) = (op \Y.Ip\ Y.3Y . nitp.3Y.Y" . rp)

be the module obtained by erasing the variables Y in P. Note that the module (P & H) can
be blocking even if module P is non-blocking. On the other hand. the parallel composition
of non-blocking Moore modules is non-blocking. and a module obtained from a non-blocking
Moore module by erasing variables is also non-blocking.

[n the rest of the chapter. we present modular techniques for verifying whether
the relation Py || --- || P, & Oy holds. where Py. P». P, are composable modules. for

n > 0. and where ¢ is defined over the set of variables |JI_, .X'p,.

4.3 Modular Rules for Invariant Verification

We present three modular rules for the verification of invariants: the rules are
presented in order of increasing sophistication. and of increasing ability of successfully
erasing variables. The first rule is a standard rule based on the construction of abstract

modules:

BYiP)I| - |3 Ya-Pa) Oy
P TP = Oy

The second rule is derived from the above rule. by using in the construction of the abstract

(4.4)

modules also information about the reachable states of the concrete modules. The third
rule constructs the abstract modules using both reachability and controllability information
about the concrete modules.

4.3.1 Reachability-based abstractions

In order to improve the ability of rule (4.4) to successfully erase variables. we

construct the abstract modules using reachability information about the concrete modules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 44

Hence. we formulate the following modular verification rule:

(IY1.(P, & Reach(P))} | --- | (3 Yn-(Pn & Reuch(P,))}) = Oy
Pl” “P,,}ZCI(,O

(4.5)

This rule is sound. The rule is also complete. since whenever the conclusion holds. the
premise also does. with the choice Y] = --- =Y, = . Our experiments indicated that rule
(4.5) is often surprisingly effective in enabling the successtul erasure of variables. leading to
dramatic savings in the space and time requirements of verification. We illustrate this with

an example.

Example 4.1 This example is a simplified version of the token-ring example presented
in Section 4.5. Consider a system composed of two modules P and @Q that circulate a
token through a 4-phase handshake protocol. The module P has output variables Op =
{yrant . ack,.r . y;.c;} and input variables Ip = {grant.,. ack,}. All variables are boolean.
except for ¢; that has domain {0.1.2.3}. The module Q is defined similarly. except that
the subscripts 1 and 2 are exchanged. Intuitively. grant., and ack; form the handshake that
passes a token from Q to P. Once the token arrives into P. it is stored first in . then in
y1. The handshake variables grant; and ack, are used to pass the token back to Q. The
variable ¢ is an auxiliary variable that records the number of tokens in P. The initial
condition of P is Initp : —acky A —grant; A ry A =y, A (¢; = 0): the initial condition of Q
is Initg : —acks A —grant, A ~ra A —ya A (c2 = 0). so that the token is initially in r;. We
present the transition predicate of P in guarded-commands notation. with the convention
that the values of the variables not mentioned in the assignments are not modified. and that

the cornmand to be executed is chosen nondeterministically among those whose guards are

true:

grantys A macky A~y — acki=T: ri =T: ¢} =(c; + 1) mod 4
—grant, A ack, — ackl =F

Ly A =y — I\ =Fy=T

| —grant, A —acka Ny, --— grant), =T: yi =F: | =(c; = 1) mod 4
1 grant, A ack, — grant| =F

T —_

The transition predicate of Q is identical. except that the subscripts 1 and 2 are exchanged.

The invariant is ¢ : [({¢; +¢2) mod 1) < 2]. and states that there is at most one token. To

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 45

verify that P || Q & Op. we can apply rule (4.5) with sets of erased variables Yp = {x.y,}
and Yo = {z2.y2}. Hence. we are able to erase all the variables that are not used for
comnmunication. and that do not appear in the invariant. The intuition is that. once the

value of ¢, is known. the predicate
Reach(P) : (Cl =0A - A —'yl) \4 (C[=1A{r & !jl)) \ (Cl =2AI /\.L'-_))

provides sufficient information about the possible values of the crased variables r; and i,
to enable an accurate computation of the successor states. In contrast. rule (4.4) does not

enable the erasure of any variables. 8

4.3.2 Controllability and reachability-based abstractions

Consider an instance P || --- || P, E O¢ of the invariant verification problemn.
for n > 1. As mentioned in the introduction. the predicate Reach(P,) defines the reach-
able states of module P, when the module P, is in a completely arbitrary environment. for
| < i < n. However. 2 module may have many more reachable states when composed with
a completely arbitrary environment. than when composed with the other modules of the
system. To obtain more precise predicates. we consider the states of P, that are reach-
able under the most general environment under which P, satisfies the specification Oy. for
Il € ¢ € n. The idea is that. if the system has been properly designed. then the actual
environment of P, is a special case of this most general environment.

Recall that an environment for a module P is a non-blocking module E com-
posable with P. Given a module P and a predicate ¢. we denote by Envs(P) the set of
all environments of P. and we let Envs .(P) = {E € Envs(P) | P|| E &= Oy} the set of

environments of P under which the specification Oy holds. We define
CR(P.z) = VEeEnus_.(P) I Xe \ Xp). Reach(P || E)

with the convention that CR(P. ¢) = F if Envs .(P) = 0. The predicate CR(P.) defines
the set of states of P that can be reached when P is composed with an environment under
which Oy holds. Denote by X . the variables occurring in . The following proposition

gives some additional properties of the predicate CR(P.).

Proposition 4.1 Given a non-blocking module P and a predicate . the following asser-
tions hold.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 46

1. There is an environment E € Envs .(P) with Xg = Xp U X . such that
CR(P.p) = 3(X .\ Xp). Reach(P | E).

o

The implications CR(P.p) = 3(X .\ Xp). ¢ and CR(P.p) — Reach(P) hold.

Regarding the second assertion. note that in the introduction we implicitly assumed X . C
Xp, for 1 €1 < n for the sake of simplicity. while here we are only assuming the weaker

X.C U=, Xp. We can then formulate the verification rule:

Ay Initp, = N CR(P..¢)
Pl (llyeqr.np (3Y,.(P, & CR(P). 0)))) = OCR(P,.p) 1<i<n
Pyl -+ || Py E Qg

(4.6)

In the second premise of this rule. for 1 < { < n. we cannot erase variables of P,. In
fact. the predicate CR(P,.) on the right hand side of = involves most of the variables in
P,. preventing their erasure. [n the experiments described in Section 4.5, the systems were
composed of two modules. and rule (1.5) performed better than rule (4.6). since in rule (4.5)
the variables could be erased in both the composing modules. In systems composed of many
moclules. it is conceivable that the advantage derived from using the stronger predicates
of rule (4.6) in all modules but one. thus possibly erasing more variables. outweighs the

disadvantage of not being able to erase variables in one of the modules.

Proposition 4.2 Rule (4.6) is sound. If P,. P, are non-blocking. rule (4.6) is also

complete: if the conclusion holds. then the premises also hold for Y| =--- =Y, =4.

Proof. It suffices to consider the case Y7 =-.- =Y, = 0. To show that the rule is sound.
we assume that its premises hold. and we prove by induction on & > 0 that. if sg.5;.....: Sk
is an initial trace of Py || --- || P,. then 5, = CR(P,.) forall0 < i< kand 1 < < n.
The base case follows from the first premise of (-4.6). For the induction step. assume that
the assertion holds for k. and consider the assertion for & + 1 for any j. with 1 < j < n.
The trace sq.sy.....: Sk- k-1 15 an initial trace of P, || (“15{1 npy (P& CR(P,.¢))) Hence.
we have that s;.; = CR(P,.). completing the induction step. From X. C |J;_, Xp, and
from Proposition 4.1. part 2. we have that the implication (A|_, CR(P,.p)) — p holds.

=1

This implication. together with the conclusion of the induction proof. leads to the desired

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 17

result. The completeness of the rule tollows by noticing that if P, || --- || P, = O¢. then by
definition of CR(-.p) we have P, || --- || P, E OQ(CR(P;.o) A--- A CR(P,.p)). B

To compute the predicate CR(P.p) given P and ». we proceed in two steps. First. we
compute the predicate Ctr(P.¢) defining the set of states from which P is controllable
with respect to the safety property Ogw. The predicate Ctr(P.yp) can be computed using
Algorithm 2.3. Then the predicate CR(P. p) can be computed using the following algorithm.

which incorporates Algorithm 2.3 as a subroutine.

Algorithm 4.1
Input: Module P and predicate .
Output: Predicate CR(P.) over Xp.

Initialization: Let 7 = X .\ Xp. and Vy = Initp A 3F . YOp. ([n-itp — (Ctr(P. o) A ,:)).
Repeat: For & > 0. let

VL, =V vaXe. [Vk A7p AIF YO, . (,—,, — (Ctr'(P.g) A m)]
Until: V. = V5.

Return: 1.

For each & > 0. the predicate Vi over Xp defines the set of states of P that can be reached
in A or less steps when P is composed with an environment E such that P|| E = QOg.
To understand how this predicate is computed. note that the predicate vOp . (Initp —
(Ctr(P.) A @)) defines the set of initial valuations for the variables in [p U F that are
safe for the environment: if one such valuation is chosen by the environment. the system
will start in a controllable state that satisfies . regardless of the valuation for the output
variables in Op chosen by the module P. The iteration step follows a similar idea. If V}%
defines the set of current states. then the formula A’ : 3.Xp . (Vi A 7p) over O defines the
valuations for the output variables that can be chosen by P for the following state. The
environment must choose a valuation for the variables in [, UF’ that ensures that. regardless
of the valuation for O, chosen by the module. the successor state satisfies Ctr'(P.2) A .
If Vi defines the set of current states. the set of such valuations for I'p U F' is defined by
the formula

K> :3Xp . YO, . ((Vk A7p) = (Ct(P. o) A 4,,7)).

[t is then easy to see that the iteration step of Algorithm 4.1 can be written simply as

Vioi = Ky A3F' . K. so that K| constrains the next valuation of the output variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 48

and 3F' . R, constrains the next valuation of the input variables. Algorithms 2.3 and 4.1
can be implemented enumeratively or symbolically. and they have running time linear in
|States(Xp U X)|. In the next example. we see how rule (4.6) can enable the erasure of

variables that could not be erased with rule (4.3).

Example 4.2 Consider the verification problem P, || P, = Op. where the invariant is
¢ : =z; A —~za. The modules have variables Op, = {r,.y,.2,} and Ip, = {2_,.z2_,}. for 1 <
i < 2: all the variables are boolean. Module P, has initial predicate Initp, : ~r{ A -y A -z
and has transition predicate 7p, : [£] = 2] A[(mz) A —x2) = (Y] =)| A [~y — (2] = 21))-
Module P, is defined in a symmetrical fashion. Informally. module P, behaves as follows.
[nitially. all variables are false. At each step. the new value for r; is the old value of z,.
If £; v £y holds. then y, can change value: otherwise. it retains its previous value. If y; is
true. then = can change value: otherwise. it retains its previous value. [t is easy to check
that Py || P, = O holds.

Counsider module P;. The states where 2y = T or 25 = T are obviously not con-
trollable. The states where y, =T are also not controllable. since from these states module
Fy can reach a state where z; = T regardless of the values of the input variables r» and
z». Likewise. the states where r; = T or r» = T are not controllable. since from these
states the module can reach a state where y; =T regardless of the values of the input vari-
ables. The only controllable (and reachable) state of P, is thus defined by the predicate
CR(P,.p): =~y A —~yy A =2y A -y A 29, Predicate CR(Ps.) is defined in a svinmetrical
fashion. The reachability predicates are given simply by Reach(P,): T and Reach(P) : T.

Rule (4.6) can be applied by taking Y7 = Y, = {y;.y2}. In fact. the composite
module P\ || (3Y5.(P2 & CR(P».))) admits only the initial traces consisting of repetitions
of the state [ry = F.y, = F.2; = F.r» = F.2» = F|. This shows that the first premise
holds: the case for the second premise is symmetrical. On the other hand. no variable
can be successfully erased using rule (4.5). In fact. if we erase variable y,. then the right
hand side exhibits the initial trace sg.s,. where s : [ry =F.y; =F.2y =F.ry =F.2 =F|
and sy : [ry =F.yy =F.2y =F.r3 = F.z2 = T|. This trace is possible because the state
to : [Ly = F.zy = F.Ly = F.y2 = T.z» = F| over Xp, is reachable. and hence it satisfies
Reach(P;). and agrees with sg on the shared variables. The trace is then a consequence of
the transition from £ to ¢ty : [=F.z1 =F. Ly =F.y2=T.2p =T| in P». A similar argument

shows that it is not possible to erase the variable . 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 19

4.4 Implementation of the Verification Rules

We have implemented the algorithms described in this chapter in the verification
tool MocHA [AHM*98]. MoCHA is an interactive verification environment and it enables.
among other things. the verification of invariants using both enumerative and symbolic
techniques: for the latter. it relies on the BDD package and image computation engine
provided by VIS [BHSV*96]. which we used in our implementation.

One important technique we use in the implementation of the rules is that. instead
of computing the abstract modules explicitly. we compute them implicitly. The idea is as
follows: suppose we are computing the reachable states of (3Yp.P) || (3Y.Q). A straight-
forward algorithm would be to first compute the two abstract modules. and then compute
the reachable states of their composition. This is very inefficient in terms of the usage
of space. Transition relations are usually presented as a list of conjuncts rather than as
a single. larger conjunct. The explicit computation of the abstract modules would imply
conjoining all the transition relations and building a monolithic one: if represented as a
BDD. such a monolithic conjunct would often be prohibitively large. Instead. we quantify
away the erased variables of the abstract modules only when necessary. as for example in the
computation of the reachable states. For instance. we use the following symbolic algorithm

to compute the reachable states of the parallel composition of two abstract modules:

Algorithm 4.2
Input: Modules P and Q. and variables Yp C Xp \ Og and Yy C Xy \ Op.
Output: Reach((3Yp.P)[|(3Y0.Q)).

Initialization: Let Uy = 3(Yp U Yy) . (fnitp A Initg).
Repeat: For k£ > 0. let

Ut =L VIXpUXQUYRUYY)) . (Lk ATp A TQ) -
Until: Uy = Cr.

Return: (7.

In the body of the loop. we rely on the early quantification algorithm in VIS to keep
the intermediate BDDs small. With this scheme. a monolithic transition relation is never
built. In particular. our implementation represents abstract modules as pairs consisting of
a concrete module and of a list of variables that have been crased from it: such pairs are

called ertended modules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 30

In order to experiment with the verification rules proposed in this chapter. we
implemented a simple script language. called sl. built on top of MOCHA and based on
the Tcl/Tk APL The algorithms and methodologies described in this chapter provide the
theoretical basis of the commands provided by s1. The verification rules proposed in this
chapter can be implemented as sl scripts. and the language sl provides invaluable flexibility
for experimenting with alternative forms of the rules. An example of script is the following.
which verifies the correctness of the demarcation protocol using rule (4.3) (the demarcation

protocol is described in Section 4.5.1).

read_module demarc.rm

sl_em P Q Spec

sl_reach phi em_Spec s

sl_reach rp em_P s

sl_restrict Prest rp em_P

sl_erase Pabs Prest P/xw P/xr P/reql P/grantl P/req2 \
P/grant2 P/xlupdl P/xlupd2 P/busy

sl_reach rq em_Q s

sl_restrict Qrest rq em_Q

sl_erase Qabs Qrest Q/xw Q/xr Q/reql Q/grantl Q/req2 \

Q/grant2 Q/xlupdl Q/xlupd2 Q/busy
sl_compose Rabs Pabs Qabs
sl_checkinv Rabs phi s

The command read_module parses the file demarc.rm. containing the declarations of the
modules P and Q. composing the protocol. and Spec. whose reachable states constitute
the invariant. The command sl_em P Q Spec builds the extended modules em P. em_Q.
and em_Spec from P. Q. and Spec: of course. these extended modules have empty sets of
erased variables. The command sl_reach phi em_Spec s computes the predicate phi =
Reach(em_Spec). The parameter s of this and other commands means “silent”. i.e.. no
diagnostic information is printed. The rest of the script checks that em P ||em.Q = Ophi
using rule (4.5). First. the commands s1_reach and sl_restrict are used to compute rp =
Reach(em_P) and Prest = (em P & rp). Then. the command sl_erase erases a specified list
of variables from Prest. producing the extended module Pabs. As discussed earlier. the
command sl_erase performs no actual computation. but simply adds the specified variables
to the list of erased variables. The extended module Qabs is constructed in an analogous
fashion. Finally. the command s1_compose composes Pabs and Qabs into a single extended

module Rabs. which is checked against the specification Ophi by command sl _checkinv.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION

1]
s

Apart from these commands. we also have implemented commands including
sl_wcontr and sl_contrreach. which together compute the predicate CR(P.) given a

module P and a predicate ¢.

4.5 Experimental Results

To demonstrate the effectiveness of the proposed approach to modular verification.
we compare the time and memory requirements of global state-space exploration with those
of rule (4.5) and rule (4.6). We do not compare our approach with other modular verification
approaches. since these approaches involve user intervention for the construction of the
environments. By manually constructing the environments or the abstractions it is possible
to improve on our results.

We consider three examples: a demarcation protocol used in distributed databases.
a token-ring arbiter. and a sliding-window protocol for data communication. All experi-
ments have been run on a 233 MHz Pentium® [I PC with 128MB memory running Linux.
We report the memory usage by giving the maximum number of BDD nodes used in any
fixpoint computation or predicate: this is essentially the maximum number of BDD nodes
used at any single time during verification. We also report the total CPU time: this time
does not include swap activity (swap activity was in any case very limited for all examples
reported). The automatic variable reordering heuristics of MOCHA were enabled during the
experiments. We remark that differences in time or memory usage of up to a factor of 2 are
not significant. since they can easily be produced by a variation in the automatic choice of

variable ordering.

4.5.1 Demarcation protocol

We consider an instance of the demarcation protocol described in Section 3.4.1.
The protocol ensures that two databases. residing at sites 1 and 2. never sell more than the
maximum available number of seats m aboard a plane. The variables r; and r» indicate
the number of seats that have been sold at sites 1 and 2. Each site can both sell seats.
and receive seats returned due to cancellations. In order to minimize the communication
between two sites. each site i = 1.2 maintains a variable zl; indicating the maximum number
of seats it can sell autonomously. If a site wishes to sell more seats than this limit allows.

the site can send a request to the other site for more seats. Depending on the number of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION

[@))
o

unsold seats. the other site has the option of rejecting the request. or of granting it in part
or in full.

We model each site i = 1.2 by a module P;: the specification is Of(x; < xlj)A(z2 <
rlyy A (el + £ly < m)]. Each of Py and P> controls 20 variables. of which 8 are used for
communication with the other module or appear in the invariant. and 12 are internal.
Rule (14.5) enable the erasure of 9 of these 12 variables in each of P, and P»: all of these
variables are in the cone of influence of the specification. Table 4.1 below compares the time
and space requirements of global state space exploration with those of rules (4.5) and (4.6).
tor various values of . To check the robustness of rule (4.5) against changes in the system
model, we also wrote an alternative. somewhat more complex model for the demarcation
protocol. For m = 4. the verification of the alternative model required 136156 BDD nodes

and 2009 seconds with the global approach. and 18720 BDD nodes and 211 seconds with

rule (1.5}

] Global } Rule (-1.5) Rule (4.6)

' mff BDD nodes | seconds | BDD nodes | seconds || BDD nodes | seconds
4 20881 | 97 2847 25 8695]
6 64345 ‘ 139 3338 10 20953 213
) 17936+ | 1671 | 3367 81 43915 317
] i) 633102 1 8707 l 10475 112 65-110 1878
|12 space-out - | 15923 174 93295 1980
’ 14 space-out [22205 300 145676 3913

Table 1.1: Experiment results on the demarcation protocol.

4.5.2 Token ring arbiter

The second example is a synchronous token-ring arbiter. [t involves a ring of m sta-
tions. around which a single token is passed unidirectionally through four-phase handshake
protocols. The invariant states that there is at most one token present in the stations. A
straightforward invariant would involve nearly all the variables in the system. and be rather
tedious to write. Hence. we introduce observer modules that observe the number of tokens
in the system. To enable the decomposition of the ring into two modules P, and P, rep-
resenting the half-rings. we introduce two such observers. one for each half. We were able

to erase all the variables used for the internal communications and state of the half-rings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION 33

even though these variables clearly belong to the cone of influence of the invariant. Each
half ring controls 1 + 5/ /2 variables: of these. all but 4 could be erased. In Table 4.2 we

compare the performance of global state-space exploration and of rules (4.5) and (4.6).

Global Rule (4.5) Rule (4.6)
m || BDD nodes | seconds || BDD nodes | seconds || BDD nodes | seconds
16 657 8 979 7 608 8
20 166 10 1619 9 308 12
24 1138 22 1297 26 473 20
28 1300 39 3486 24 319 29
32 1187 110 3190 143 772 143
36 1323 6l1 8230 242 1346 195

Table 4.2: Experiment results on the token-ring arbiter.

4.5.3 Sliding window protocol

Our last example is a classical sliding windows protocol from [Hol91]. whose encod-
ing is taken from the MOCHA distribution. The protocol assumes a sender sending messages
to a receiver through a lossy channel with delays. Each message has a sequence number
which is used by the receiver to reorder the received messages as well as for acknowledgment.
There is a window size m which specifies the maximum number of outstanding acknowledg-
ment the sender can tolerate: once there are rm outstanding acknowledgment. the sender
stops sending messages until it receives acknowledgment for the oldest. unacknowledged
message. Let n be the sequence number for this message. Let & be the sequence number
of the oldest message that has not arrived on the receiver side yet. The invariant states
essentially that the windows are not over-run by the protocols. that is. A — n < m.

In both the sender and the receiver. roughly half of the variables not used for
communication with the other module can be erased when applying our modular approach.
The comparison between the performance of global state-space exploration and rules (4.5)

and (4.6) is presented in Table 4.3.

4.5.4 Discussion

The experimental results indicate that the proposed approach leads to a consid-

erable reduction in the time and space requirements for the verification process. In the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION a4

Global Rule (4.3) Rule (1.6)

m || BDD nodes | seconds || BDD nodes | seconds || BDD nodes | seconds
3 3992 35 776 12 2443 33
4 11831 99 1723 41 3740 42
5 36359 1911 3843 84 8503 105
6 94684 4994 7048 156 18316 500
7 95667 2630 8282 513 22289 771
8 space-out — 26611 1582 47605 6245

Table 1.3: Experiment reults on the sliding window protocol.

examples we considered. we identified which variables could be erased in the application of
rule (4.5) by a simple trial-and-error process. We can automate this process by providing.
for each module P. a list {r;..... Lit € Op of variables of P that are not part of the
specification. and that are not accessed by other modules. We list first the variables that
are more likely to be successfully erased: those that are more “internal”™ to the module. and
that interact with fewer other variables. We then apply rule (4.3) successively with the sets
of crased variables {r,..... Lt L. ... It} {L1e--. . T2}, ... until the rule succeeds.
This process is efficient in practice. [n fact. the more variables are erased. the smaller is the
state space of the abstract modules: hence if too many variables are erased. the rule will

fail in a fraction of the time required for a successful proof.

In the three examples considered. the stronger reachability predicates used to
construct the abstract modules in rule (1.6) did not enable the erasure of any additional
variable. In the demarcation protocol and in the sliding window protocol examples. the
ability of rule (4.5) to erase variables on both sides of the parallel composition operator led
to superior results compared with rule (4.6). In the token ring arbiter example. module P,
has many more reachable states in a completely general environment than in an environment
compatible with the specification. for i = 1.2. Hence. the predicates Reach(P,) are much
weaker (and take more time and space to compute) than the predicates CR(P,.). for

¢t = 1.2 For this reason. rule (1.6) performs better than rule (1.5) in this example.

If the premise of rule (4.5) does not hold. we can construct automatically a trace
over the variables in |J;_,(Xp, \ ¥}). leading to a state that does not satisfy .. This trace
is a trace over a partial set of system variables. and it does not necessarily correspond to

a counterexample to the conclusion. If the first premise of rule (4.6) does not hold. then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4. AUTOMATIC PROOF DECOMPOSITION

[W]]
(1]

using facts about controllability we can reconstruct automatically a counterexample trace
over the complete set of system variables. On the other hand. if the second premise of
rule (4.6) does not hold for some 1 < { < n. then we obtain a trace over a partial set of
system variables that leads to a state ¢, where the predicate CR(P,. £} does not hold. From
t,. using facts about controllability we can again construct a trace over the complete set of
system variables that leads to a state where o does not hold. When confronted with a trace
over a partial set of variables. we have taken the naive approach of selectively un-erasing
some variables in the premises. until either the premises became valid. or the design error

could be identified.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[$}}
<

Chapter 5

Composition and Control

5.1 Introduction

The formulation of the control problem builds on the notion of parallel compo-
sition: given a transition system P (the “plant™). is there a transition system @ (the
“controller™) such that the compound system PJ|Q meets a given objective? Hence it is
not surprising that even small variations in the definition of composition may influence the
outcome of the control problem. as well as the hardness of its solution. (The latter distin-
guishes control from verification. whose complexity -- PSPACE for invariant verification—
is remarkably resilient against changes in the definition of parallel composition.) At the
highest level. one can distinguish between asynchronous and synchronous forms of com-
position. Pure asynchronous (or interleaving) composition is disjunctive: one component
proceeds at a time. so that an action of the compound system is an action of some compo-
nent. Pure synchronous (or lock-step) composition is conjunctive: all components proceed
simultaneously. so that an action of the compound system is a tuple of actions. one for each
component. While many concurrency models exhibit mixed forms of composition (e.g..
interleaving of internal actions and synchronization of communication actions [Mil89]). it
is natural to start by considering the control problem for the two pure forms of composi-
tion. The study of these control problems corresponds to the study of winning conditions of
games. where the two players (plant vs. controller) choose moves (actions) to prevent (resp.
accomplish) the control objective.

In practice. the most important control objective is invariance: the controller

strives to forever keep the plant within a safe set of states. The problem of invariance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL

(V3]
-~

control can be solved by a fixed-point iteration: first. we find a strategy that keeps the
plant safe for a single step: then. a strategy that keeps the plant safe for two steps: etc.
We henceforth refer to invariance control as the "multi-step™ control problem. and to the
problem of keeping the plant safe for a single step. as the “single-step” control problem.
This allows us to separate concerns: the definition of parallel composition enters the solution
of the single-step problem. but independently of the type of composition. the multi-step
problem can always be solved by iteratively solving single-step problems. In other words.
we can independently study (1) the single-step control problem. and the definition of parallel
composition plays a central role in this study. or (2) the multi-step control problem (for
invariance or even more general. w-regular objectives). assuming to be given a solution
to the single-step problem. While (2) has been researched extensively in the literature
[BL69. GHS82. RWS87. EJ9L. McN93. TWO4. Tho95]. it is (1) we focus on in this chapter.

We assume that the plant P is specified in a compact form. by a transition predicate
on boolean variables. so that the state space of P is exponentially larger than the description
of P. which is the input to the control problem. For solving the multi-step control problem.
the number of single-step iterations is bound by the number of states. Therefore. if the
single-step problem can be solved in exponential time. then so can the multi-step problem.
Conversely. it can be shown that even if the single-step problem can be solved in constant
time. the multi-step problem is still complete for EXP (deterministic exponential time).
This seems to indicate that the single-step problem is of little interest. and it may explain
why not much attention has been paid to the single-step problem previously. To our surprise.
we found that for certain natural forms of parallel composition. the single-step control
problem can not be solved in (deterministic) exponential time. and therefore its complexity
dominates also the one of multi-step control.

An essential property of systems is to be non-blocking. in the sense that everv
state should have at least one successor state [BG83. Hal93. Kur94. Lyn96]. Non-blocking
is essential for compositional techniques such as assume-guarantee reasoning [AL95. McM97.
AH99]. In control. non-blocking means that the countroller should never prevent the plant
from moving. While the asynchronous composition of non-blocking processes is always
non-blocking. synchronous composition needs to be restricted to ensure non-blocking. A
second kind of restriction arises from modeling “typed™ components. where the type specifies
the input ports and output ports of a component. as well as permissible and impermissible

dependencies between input and output signals [AH99]. In particular. hardware components

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 58

are usually typed in this way. for example. in order to avoid combinational loops or zero-
delay cycles. In control. if we restrict our attention to typed controllers. then a controller
may not exist even when an untyped controller would exist. These two kinds of common
restrictions on synchronous composition. non-blocking and typing. are related. as typing can
be used for syntactically enforcing the semantic concept of non-blocking for synchronously
composed systems.

If the plant is given by a boolean transition predicate. and parallel composition
is asynchronous. then single-step control amounts to evaluating the conjunction of a V¥ for-
mula (“all actions of the plant are safe”) and an 3 formula (“some action of the controller
is safe”). Hence. the complexity class of asynchronous single-step control is DP (which con-
tains the differences of languages in NP). For synchronous systems. the various restrictions
on composition give rise to different control problems. One way of ensuring non-blocking
is to consider only Moore processes. A Moore process is a non-blocking process in which
the next values of the output signals do not depend on the next values of the input signals.
The composition of Moore processes is again Moore. and therefore non-blocking. If both
the system and the controller are Moore processes. then the single-step control formula has
the quantifier prefix 3V (“the controller can choose the new input signals. so that regardless
of the new output signals. the system is safe™).

A more liberal way of ensuring non-blocking is to consider typed processes. i.e..
processes that explicitly specify the dependencies between the new values of input and out-
put signals. We distinguish between “static™ types. where the input-output dependencies
are fixed. “dynamic” types. where the dependencies can change from state to state. and
“dependent” types. where the dependencies unfold in steps as the next-state variables ac-
quire values. Dynamic types may be composed either “syntactically™ (by requiring that
all possible combinations of dependency relations of the component processes are acvclic).
or “semantically” (by requiring acyclicity at all states of the compound system). Static.
dynamic and dependent types ensure that that the compound system is again typed. and
therefore non-blocking. We consider two variants of the typed control problems: one in
which we are free to choose both the controller and its type. and one in which we must
find a controller of a specified tyvpe. If we can choose the type of the controller. the control
problem can be solved by considering for the controller an exponential number of types of a
simple form. namely. tvpes that represent linearly ordered input-output dependencies. The

single-step control problem resulting from each linear order of dependencies gives rise to a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 39

boolean formula with a linear quantifier prefix. with any number of ¥3 alternations. which
puts the problem into PSPACE. If the type of the desired controller is given. the single-
step control problem becomes considerably harder. This is because a (static or dynamic)
tvpe may specify partially ordered input-output dependencies. These partially-ordered
dependencies correspond to boolean formulas with partially ordered (Henkin) quantifiers
[Hen61. Wal70. BG86]. whose complexity class for satisfiability is NE (a weak form of non-
deterministic exponential time) [GLV95].

The solution of control problems in presence of types gives rise to additional sur-
prising phenomena. For example. with static or syntactically composed dynamic types. two
states s and t may both be controllable even though there is not a single controller that
controls both s and ¢t (two different controllers are required). Hence. while types provide an
efficient mechanism for ensuring the non-blocking of synchronously composed systems. they
cause difficulties in control. On the other hand. these difficulties are often not artificial. but
they correspond to real input/output constraints in the design of controllers.

Combinational or zero-delay loops in synchronous systems have been studied be-
fore. Wolf [Wol95| in her thesis recognized that some behaviors of a synchronous circuits
cannot be represented by boolean relations: for instance. the behavior that some signals
may not stabilize cannot be captured by boolean relations. She called this the ~disappearing
loop behavior™ problem and they resolve it by working on three-value logic. Malik [Mal94]
gave a procedure to to determine if a circuit with combinational loop is well-behaved —
nonblocking in our terminology. Shiple et. al.[SBT96] built on Mailk's work and defined
the constructive semantics for synchronous languages such as Esterel [Ber99]. Constructive
semantics gives a sufficient and necessary condition for a model described in a svnchronous
language. such as Esterel and Lustre. to be realizable as a physical object: more specifically.
an electrical circuit described by an svnchronous language is constructive if and only if it
stabilizes in bounded time for all gate and wire delays in the circuit. However. the definition
of constructive semantics is not based on games and hence is not applicable for studying
control. We show that the constructive semantics [Ber99] can be defined using dependent
tvpes. and hence our results are also applicable to synchronous systems such as Esterel
which have constructive semantics.

A note on the definition of a module. We require non-blocking to be a property that
holds at every state of a module. Moreover. our main focus is on the single-step control

problem. Hence. the the initial states of a module do not play any role in our investigation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 60

To simplify presentation. we theretore modify the definition of a module P = (Op. [p.Tp)
to be a triple that contains the output variables Op. input variables [p and a transition

predicate Tp. All other definitions defined in Chapter 2 remain the same.

5.2 Types for Synchronous Composition

5.2.1 Asynchronous modules

Given two composable modules P and Q. The asynchronous (interleaving) com-
position P|Q is the module with the same output and input variables as P||@Q. but with
the transition predicate rpo = ((7p A (Ob = 0g)) V (tg AN (Op = Op))). Recall that a
module P is non-blocking if every state has a successor. The asynchronous composition of
two composable non-blocking modules is again non-blocking. Hence. we say that any two
composable non-blocking modules are asynec-composable. However. there are composable

non-blocking modules whose synchronous composition is not non-blocking.

Example 5.1 Let module P be such that Op = {x}. [p = {y}. and 7p = (¥’ A ~2") V
(~y'Ar')). Let module Q be such that Og = {y}. ¢ = {r}. and g = (LAY)V (=L A=Y)).
Then P and (Q are non-blocking and composable. However. the transition predicate of P|{Q

is unsatisfiable. i.e.. no state of P||QQ has a successor. B

[t requires exponential time to check if a module P is non-blocking. which amounts to
evaluating the boolean [T formula (V.Xp)(3X}p) 7p. To eliminate the need for this expo-
nential check whenever two modules are composed synchronously. we define five increasingly
larger classes of modules for which the non-blockingness of synchronous compuosition can be

checked efhiciently.

5.2.2 Moore modules

A Moore module is a module which (a) is non-blocking. and (b) the next values
of output variables do not depend on the next values of input variables: that is. for all
states s. t. and w. if 7p[s U t'] and t[Op] = u[Op]. then 7p[s U «’]. These two conditions
can be enforced syntactically. in a way that permits checking in linear time. For example.
the transition predicate of a Moore module may be specified as a set of nondeterministic

guarded commands. one for each primed output variable £’ in Os. The guarded command

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 61

for £’ assigns a value to r’ such that (a) one of the guards negates the disjunction of the
other guards. and (b) the guards and the right-hand sides of all assignments contain no
primed variables. The synchronous composition of two composable Moore modules is again
a Moore module. and therefore non-blocking. Hence. we say that any two composable
Moore modules are moore-composable. However. since many non-blocking modules are not

Moore modules. more general types of modules are of interest.

Example 5.2 In digital circuits. a typical example of a Moore module is a buffer. For ex-
ample. it has output variables Op = {r}. input variables [p = {y} and transition predicate

e = (y A L') V (~y A ~2'). In guarded commands. this can be writtenas [T —» ' =y. @

5.2.3 Statically typed modules (or Reactive Modules [AH99])

A dependency relation for a module P is an acyclic binary relation >~ C Op x Xp
between the output variables and the module variables (acyclicity means that the transitive
closure is irreflexive). The module P respects the dependency relation = at state s if. for
all states ¢t with rps U t']. for each subset Y C [p of input variables. and for each truth-
value assignment u' to the variables in Y. there is a state u with 7ps U /] such that
u[Y'] = u'.and u[Z] = t[Z] for Z = {z € Xp | (not = >"y) for all y € Y'}. where >=* is the
reflexive-transitive closure of >. A statically typed module (P.~p) counsists of a module P
and a dependency relation for P. such that (a) the module P is non-blocking. and (b) the
module P respects the dependency relation > p at all states. These two conditions. as well
as the acyclicity requirement on dependency relations. can be enforced syntactically in a
way that permits checking in linear time. For example. we may use guarded commands as
with Moore modules. except that the guards and the right-hand sides of assignments are
allowed to contain primed variables with the following proviso: if the guarded command for
' contains a primed variable y'. then »r >p y. We refer to the dependency relation >p of
a statically typed module (P.>p) as a static type for the module P. Note that if >’ is a
dependency relation for P. and >p is a subset of >'. then >’ is also a static type for P.

Every non-blocking module has a static type (have each output variable depend
on all input variables). Hence. there are composable modules with static types whose
synchronous composition does not have a static type. However. static types suggest a
sufficient condition for the existence of compound static types which can be checked ef-

ficiently. Two statically typed modules (P.>p) and (Q.>¢) are statically composable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 62

or static-composable. if (1) the modules P and @ are composable. and (2) the relation
>pliog = > p U >q is acyclic. Then. the relation > pyq is a static type for the synchronous
composition P||Q. Since acyclicity can be checked in linear time. so can the requirement if
two statically typed moduiles are static-composable. However. two statically typed modules

(P.>p) and (Q.>@) may not be static-composable even though the compound module
P|Q is non-blocking.

Example 5.3 An inverter (P.>p) can be modeled as a statically typed module. In
guarded commands. it can defined as: | T — ¥’ := -z'. from which we can derive its

dependency relation: y >p z. Note that P is not a Moore module.®

Example 5.4 A module may have two static types. neither of which is a subset of the
other. Let module P be such that Op = {xq.r}. Ip = {y}. and 7p = (£, 51| S y). Using

guarded commands. we can specify P in two ways:

It = zp:=-(y 3Y) It = ry:=T7
A , It — ry:=F
(P.>p) = (P->‘p)=
It = Lyi:=1 A
It = £):=F It = ryi=—(h =y

The two statically-typed modules have the same transition relation. namely. 7p.
but they have different static types: »p= {rg > . ro > y} while >p= {r; > ro. £ >
y}. Choosing different static types (i.e.. implementations of the transition predicate) can
have implications on composability with other modules. Let module (Q.>g) be such that
O¢ = {y}. Ig = {xo.£1}. and in guarded commands. (Q.>~¢g) =] T — y' := r{. The
static type > for Q is {y > rp}. Then (P.>p) is not static-composable with (Q.>¢).
but (P.>) is. @

5.2.4 Dynamically typed modules

Example 5.4 suggests the following generalization of static types. A composite
dependency relation for a module P is a set D = {(v!.>")..... (w™.>")} of pairs. where
each ' is a predicate over the module variables Xp. and each >' is a dependency relation
for P. such that for each state s of P. there is exactly one predicate ¢v'. 1 < i < m.
with #*[s]. [f ©*[s]. then we write >° for the corresponding dependency relation =*. A
dynamically typed module (P.Dp) covsists of a module P and a composite dependency

relation Dp = {(¥p.>%) | 1 < i < m}. such that (a) the module P is non-blocking.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 63

and (b) at every state s. the module P respects the dependency relation >%. These two
conditions. as well as the requirements on a composite dependency relation. can again be
enforced syntactically in a way that permits checking in polynomial time. For example.
each predicate). 1 < i < m. may be required to contain the conjunct A i —Yrh. and yP
may be required to be equal to A, ¢,.,, ~¥p. If we use guarded commands to specify the
transition predicate. then for each guarded command. the guard may be required to contain
a conjunct of the form y}. for some 1 < i < m. and together with the right-hand sides of

assignments satisfy the proviso for the corresponding dependency relation >.

Example 5.5 Level-sensitive latches are commonly used in the design of high performance
systems such as pipelined microprocessors. Typically different parts of a system are active
depending on the phase of the clock. As an example. consider a circuit consisting of three
modules Py, Py. and P3. Module P; is an inverter which connects the vutput of the -e-
clocked level-sensitive latch Pj to the input of the c-clocked level-sensitive latch P,. The
output of the latch P, is connected to the input of the latch P;. Using guarded commands.

the three modules can be specified as follows:

. -y =
(P[.Dpl)z{ u'r - = _,:I} (P_)-Dp_.): H(' Y r
[-~c = y:=y
[e - ==
(P3~DP3)=
-c — =y

The dynamic types for the modules are Dp, = {(T..r > z)}. Dp, = {(c.y » r).(=c.B)}.

and Dp, = {(c.0).(—c.z > y)}. B

We refer to the composite dependency relation Dp of a dynamically typed module (P. Dp)
as a dynamic type for the module P. Like static types. dynamic types suggest sufficient
conditions for the non-blocking of synchronous composition. Furthermore. the conditions
for the composability of dynamic types are more liberal than static-composability. and thus
they are applicable in more situations. Consider two dyvnamically tyvped modules (P. Dp)
and (Q.Dg) with Dp = {(vh.>5) | 1 <i < m} and Dg = {(%.>—{?) |1 <j<n} We
write >'/ for the union > U >6. where 1 < i < mand 1 < j < n. We provide two
definitions of composability for dynamically typed modules. one purely syntactic. and the

other in part semantic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 61

e The dynamically typed modules (P.Dp) and (Q. Dg) are syntactically dynamically
composable. or dsynt-composable. if (1) the modules P and Q are composable. and
(2) the relation >'7J is acyclic for all 1 < i < rmand 1 < j < n. Then. Dpyy =
{(¥p A % >y |1 <i<mandl <j<n}.isa dynamic type for the synchronous

composition P||Q.

e The dynamically typed modules (P. Dp) and (Q. Dg) are semantically dynamically
composable. or dsem-composable. if (1) the modules P and @ are composable. and
(2) the relation >*7 is acyclic for all 1 < { < mand 1 < j < n for which the
conjunction w‘P/\% is satisfiable. Then. Dpjjg = {(¥p A0 >*/) |1 <i<mand | <
J <nand (3Xp0)(¥p A %)} is a dynamic type for P||Q.

Note that it can be checked in quadratic time whether two dynamically typed modules
are dsynt-composable. while it requires exponential time (by evaluating a quadratic num-
ber of boolean [1{ formulas) to check if they are dsem-composable. However. checking if
two dynamically typed modules are dsem-composable is still simpler than checking if the

synchronous composition of two untyped modules is non-blocking (1] vs. I15).
Proposition 5.1 The following assertions hold:

e There are two dynamically typed modules (P.Dp) and (Q.Dg) which are dsynt-
composable but not static-composable. even though the union of all dependency re-
lations in Dp is a static type for P. and the union of all dependency relations in Dy

is a static type for Q.

e There are two dynamically typed modules which are dsem-composable but not dsynt-

composable.

Example 5.6 The dynamically typed modules (P,. Dp,) and (FP,. Dp,) of Example 5.5
are dsynt-composable. and the compound module Q = Pi|| P, has the dynamic type D¢ =
{(c.y = £ > z).(—c.z > z)}. The modules (Q. Dg) and (Ps. Dp,) are not dsynt-composable.
but they are dsem-composable. The compound module Q|| 7 has the dynamic type {(c.y >

£>z).(me.e>z>y)}. B

5.2.5 Dependent type modules

Dynamic types can be further generalized by allowing the dependency relation to

be a function not only of the current state. but also of the partial next state. We define the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 65

variable dependency relation. which establishes the possible orders in which the variables can
be assigned a value in order to determine the next state. and the dependencies among the
values chosen. A variable dependency relation for P is a set C = {(¢'.=")..... (w™. ="}
of pairs. where each ¢* is a boolean formula over the unprimed and primed module variables
Xp U Xp. and each ' C Op x 2\P is a binary relation with the intention that if y* holds
in an extended state. and = >' Y. then £ can be given a next value. and this value can
depend on the next values of the variables in Y.

A variable dependency relation is a syntactic object: to make the variable depen-
dencies more explicit. we define the corresponding dependency function C: Spx Rpx Xp —
2P as the function that. given an extended state (s.t') and a variable r. specifies the set
of variables on which r depends. as C(s.t'.r) = J{Y | (v.(r.Z)) € C and v[s U t']}.

The variable r is enabled for (P.C) at the extended state (s.t') if C(s.t'.r) C
Var(t). The module P respects the variable depeundency relation C if for every pair of
extended states (5. ") and (s. «’) of P. for every variable r € Xp that is enabled for (P.C) at
both extended states. and for every b € [B. iff[C_'(s. t.r)} = u[C-'(s. u'. r)]. then the extended
state (s. ' U {(L7.h)}) is an (r.7p)-successor of (s.t') iff the extended state (s.u" U {(L'.h)})
is an (r.7p)-successor of (s.u'). If the transition predicate of a module is specified by a
set [of nondeterministic guarded commands. then the variable dependency relation can be
deduced from [as follows: for each guarded command ¢ = £’ =ein . let (y.>=) € C.

where == {(£.Y) | y € Y iff § occurs in g or in e}.

Example 5.7 [Mal94] Cyclic circuits are often used in hardware systems for minimizing
the circuit size. As an example. consider the circuit in Figure 5.1. The output w is a
function of the inputs 5 and r. The circuit consists of three dependent-type modules P. Q

and R. In guarded commands. they are

-5’ — f = F ! 1 ! — :, =G !
(P.Cp) = | e B v
o — Y = F(z) o - =G
j-s —= u'=7
(R.Cp) =
5 - uw' =y

Module P has the variables Op = {y} and Ip = {s.r.z}. and the variable dependency re-

lation Cp = {(~~". {(y-{x.sH}). (5" {(y. {z.s}H}}. Module Q has the variables O¢ = {z}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 66

1
I 1)
0 . lj, s
I " F : R
l= l ! l-—-*-"
b Rk :
:>I | w
"
e —_ | 0 !
' [I :
o o X
.l, 1 - G :.‘,
1 ! v
' # '
[S !
, N
S

Figure 5.1: A cyclic circuit composed of three modules P. Q. and R. It performs the
following function: if s’ then w' = F(G(r")) else w' = G(F(r')). where F and G are two
combinational blocks. such as a shifter and adder.

and [y = {s.r.y}. and the variable dependency relation Cy = {(-s". {(z. {y. s }. (" {(z=. {z.sH]}
Module R has the variables Og = {w} and [= {y. z}. and the variable dependency rela-

tion Cp = {(~s". {{w. {z.5 D). (" {(w. {y.sDH})}. @

To define dependent-type modules. and to define composition of two dependent-type mod-
ules. we need to know how the variable dependency changes as the state transitions take
place. Therefore we define the micro-step graph. a graph depicting the sequence of partial
states traversed as a new macro-step successor is determined.

Micro-step graph. Consider a module P and a variable dependency relations Cp for
P. For a state s € Sp. the micro-step graph MG ,(P.Cp) is a directed acyclic graph whose
vertices are the pairs (s.t'). where t’ € Rp together with the additional distinguished vertex
1. which is used to denote an illegal configuration. The edges of MG ,(P.Cp) are partitioned
into P-edges and E-edges: they are defined as follows. for all vertices a = {(s.t') and all

variables r € Xp:

e If r € Op and r is cnabled for (P.Cp) at the extended state (s.t'). then for each

(r.7p)-successor (s.u') of c. there is an P-edge from a to the vertex (s.u').

o If r € Ip and £’ & Var(P). then for each boolean constant b € B. if 3 = (5.’ U (L. b))
is a (. 7p)-successor of . then there is an E-edge from « to 3. If 3 is not a (r.7p)-

successor of . then there is an E-edge from « to L.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 67

A vertex of MG,(P.Cp) is terminal if it does not have any outgoing edges. Note that the
micro-step graph has the following properties: there are at most 31XP! vertices. the size of

each vertex is at most 2-|{.Xp

. and the depth of the graph is at most | Xp| + 1.

A dependent-type module (P.Cp) consists of a module P and a variable dependency

relation Cp such that (a) the module P respects the variable dependency relation Cp and
(b) P is well-typed w.r.t. Cp at every state s € Sp. A module P is said to be well-typed
w.r.t. Cp at the state s. if there is a path in the micro-step graph MG ,(P.Cp) from the
initial vertex (s.0) to a terminal vertex . then o # 1. and o = (s.¢') for some state t € Sp.
Condition (b) states that for all environment inputs. the module P does not block. We refer
to the variable dependency relation Cp as a dependent type for P.
Composition. Two dependent-type modules (P.Cp) and (Q.Cgq) are dependent-type
composable. or dep-composable. if (1) P and () are composable and (2) the composition
P||Q is well-typed w.r.t. Cpyqg at every state s € Spyg. Then the variable dependency
relation Cpy g is a dependent type for the composite module P|[Q). The following theorem
shows that checking composability for dependent-type modules has the same worst-case
complexity as for dynamically typed modules.

Dependent types capture a larger class of non-blocking svnchronous composition
than dynamically typed modules. as shown by the following proposition. For a dependent-
type module (P. 7p.Cp). the variable £ € Xp dependson y € Xp at a state s € Sp. written
x > y. if there exists a partial state t’ € Rp and a pair (1.) € Cp such that ¥[sUt'] and

> y. Then Dp = {(s.>") | 5 € Sp} is a dynamic type for P.

Proposition 5.2 There are two dependent-type modules that are dep-composabie hut not
dsem-composable. There are two dependent-type modules (P.Cp) and (Q.Cg) which are

not dep-composable. even though the synchronous composition P||Q is non-blocking.

Example 5.8 The dependent-type modules P. Q. and R from Example 5.7 are dep-
composable. If these modules are viewed as dynamically typed modules. the output of
each module will depend on their respective inputs. Hence there will be a cyclic depen-
dency in the union of their dependency relations. namely. y > z and = > y at all states.
Since dynamically typed modules do not permit cyclic dependencies. these modules are not

dsem-composable. B

Example 5.9 A latch implemented as two NAND gates can be described as (Figure 5.2):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 68

Figure 5.2: A latch implemented as two NAND gates.

(P.Cp) =]T = x| = ~(y) A L) (Q.Cqy) =T = o, = ~(yy A s
(P.Cp)and (Q.Cg) are not dep-composable. although the composition P||Q is non-blocking
at all states of P||QQ. The reason is that there is an inter-dependency of the variables r

!

and r, that cannot be resolved if y} = ¢, = T. In fact. no dependent-type modules can

describe this two-NAND gate system. @

Proposition 5.3 Checking if two dependent-type modules are dep-composable is complete
for coNP.

Proof. To show that two dependent-type modules (P.Cp) and (Q.Cg) are not dep-
composable. one can check that either P and Q are not composable. or guess a state s €
Spyg and a path (s.0). (s.£]). (s. th).... . (s.t}) = « in the micro-step graph WG (P||Q.Cpyq).
and check that Var(t,) C .Xpy- and that there is no outgoing edge from «. This last condi-
tion can be checked by checking that Var(¢,) contains all input variables Ipyg. and that no
output variable undefined in ¢/, is enabled at the extended state (s.#,). Note that this check
requires only polynomial time. because a variable can be enabled only when all variables
that occur in its enabling condition are assigned a value by s U #.

Hardness comes from the fact that dynamically-typed modle is a special case
of dependent-type module. and therefore dsem-composability is a special case of dep-
composability. We give a proof based on the reduction from tautology checking of boolean
formulas. Given a boolean formula o(ry..... Ip). we construct dependent-typed modules
(P..Cp).1 <t < nand (Q.Cqp) and (R.Cgr) defined as tollows: Module (P,.Cp,) has one

output variable r, and no input variable. and in guarded commands.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 69

It - =

’
(PuCP‘) =)
It = £

Module (Q,.C¢q,) has one output variable r and one input variable y. and in guarded

commands,
ly = I'=r7
(Q.Cq) =
-y - =7
Module (R.Cg) has Og = {y.z}. [= {&}..... rp.r}. and guarded commands
(=]
It = ¢ =p.....)
(R.Cg) = A

Tt = =1

[t is not hard to see that the modules (P,.Cp,). 1 < i < n. (Q.Cy) and (R.Cg) are dep-

composable iff 2 is a tautology. 8

5.2.6 Summary of types.

Let A = {async. moore. static. dsynt. dsem.dep} be the set of module classes. We
surnmarize this section by defining. for each module class a € \. a set M, of modules: for
a = async, let M ,4n. be the set of non-blocking modules: for @ = moore. let M g0 be
the set of Moore modules: for a = static. let M 44 be the set of statically typed modules:
for = dsynt and o = dsem. let M syn; = Musem be the set of dynamically typed modules:
and for a = dep. let My, be the set of dependent-type modules. Define the module class
ordering async < moore < static < dsynt < dsem < dep. Then. for a..3 € \ with a < 3.
every module P € .M, can be considered to be a module in .M ; by adjusting its type. or the
semantics of composition. if necessary. Precisely: an async-modile can be considered as a
moore-module by changing the semantics of composition: a moeore-modiile can be considered
a static-module with the empty dependency relation: a static-module can be considered a
dynamically typed module with a single dependency relation. and a dsem-module can be
considered a dep-module whose variable dependency relation is only a function of the state.
We also define for each module class o € .\ a corresponding composition operator ||,: if

a = async. then ||, = |: otherwise. ||, = ||.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 70

5.3 Application: Constructive Semantics

We provide an alternative definition of constructive semantics [SBT96. Ber98] of
synchronous languages using our type systems. Constructive semantics can be defined in
three different ways: constructive operational semantics. based on constructive boolean
logic: constructive behavioral semantics. based on Scott’s fixed point semantics: and circuit
semantics. based on the up-bounded inertial delay model. The circuit semantics captures
exactly the set of programs described in synchrouns languages such as Esterel that can be
translated into delay-insensitive digital circuits. It was shown that the three semantics were
equivalent.

We show that dependent types can be used to define constructive semantics. by
showing the equivalence between constructive operational semantics and dependent types.

The following formulation of constructive semantics is taken from [Ber99].

5.3.1 Boolean circuits

A boolean circuit C is defined by a set X¢ of variables or wires and a set of wire
definitions. The set X is partitioned into a set O¢ of output wires and a set [of input
wires. Boolean expressions e are composed of wires w. constants F and T. and connectives
-.V and A. Each output wire is defined by exactly one wire definition. There are two kinds

of wire definitions:

e An equality definition w = e. i.e.. the nert value of wire is the value of e evaluated

with the nezt values of the wires X. The wire w is called a combinational wire.

e An register definition w := e. i.e.. the next value of w is the value of ¢ evaluated with

the current values of the wires X. The wire w is called a register.

The set of combinational wire is denoted by S¢. while the set of registers is denoted
by R¢. An input v for C is a truth value assignment to the the input wires Ic. An state r

of C is a truth value assignment to the the registers Re.

5.3.2 Constructive operational semantics

Given a boolean circuit C. an input v for C. a state r of C. a wire expression e. and
a Boolean value b. the constructive evaluation relation v.r - e — b is defined inductively

as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 7l

v.r ke b—=b

v.r Fe o we—b if wele and v(w) =5

v.r e w—b if weRcand r(w)=2>5

uv.r e we—b if w=e€elanduv.rtre—b
ver ke me— b if v.rkce— —=b

v.r ¢ egvVea—=1 if v.rtce,—=lorv.rtces—1
v.r Fe egVes—=0 if virbeey—=0and v.rtces—20
v.r e etANey =1 if vortece—=landv.rkces—1
v.r Fe egAey—=0 if virteey —=0oruv.rtcey;—0
A boolean circuit C is constructive w.r.t. v and r if. for any wire w. v.r k¢ w — b for some

h. Moreover. if v.rte w—band v.r - w— b then b =08'.

5.3.3 From boolean circuits to modules

We translate a booelan circuit € to a set M(C) of dependent-type modules. To
acilita e translation. we give names to each subexpression that appears i e wire
facilitate the translation. we g t I b ion that in the wir
definitions of the boolean circuit C. More precisely. we define a extended circuit C as the
ollowing: For each wire definition w = e (resp. w := e) . we have the wire definition w = w,
following: For eact ¢ definit r I t lefiniti
(resp. w := w,) in C. For each subexpression f of e. we introduce a fresh auxillary variable

wy. and add the wire definition dy to C. where d 1 is defined as follows:

wyp =T iff=beB
wp = w if f=w
df = ¢ wp = —wy, it f=-h
wp = wys, V wy, ff=fAVE
| wy =wp Awy, iff=HAf

Clearly. X D X¢. [= [and Rs = R¢. It is not hard to see that given an input ¢ and
R C C ¢ (& C C 5

a state r. C is constructive w.r.t. v and r iff C is constructive w.r.t. © and r. To prove
this. note that for any wire w € X¢. vorb¢c w — b iff v.r Hz w — h. Moreover. for each
auxilliary variable w,. since it is a boolean combination of the boolean constants. wires w
or auxilliary variables wy corresponding to the subexpressions f of e. and every w has a

J f P 5 p 2

unique value. w. also constructively evaluates to some unique boolean value. Therefore. if

C is constructive. then C is also constructive. The other direction is trivial.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL

-
o

Now we define the translation from a boolean circuit C to a set M(C) of dependent-
type modules represented in guarded commands. For any wire definition ¢ € C. we have in
M(C) the corresponding module M(d) defined as follows. In the following, the variable r is
the output variable of the module M(d). while the variables w.ry. x> and w, are the input

variables (if they appear in the guarded command of M(d)).

M(c=5b) = [tr—>r=b wherebe B
M(r=w) [t = £ =uw'. where w e S;
V(= w) = [T = =w. where w € R
Mz = —~xy) = [t o=

s - I’'=T
M(r=ur Vi) = ¢ [- =T

| [~LiA-2, = '=F

(|-} - r'=F
Mr=nAry) = §]|~ - ’'=F

| [A, — x'z’[‘}
Mz = u,) = t>t=u

Given an input ¢ for C. let M(v) be the set of modules which provide inputs to the
modules in M(C). [t is defined as follows: For each assignment £ = b in ». we have the
module [T = £’ = b in M/ (r). The following theorem establishes the relationship between

constructive semantics and dependent-type modules.

Theorem 5.1 Let C be a boolean circuit and M({C) be the corresponding dependent-type
modules. Then C is constructive w.r.t. v.r iff (P.Cp) = |{(Q.Cg) | (Q.Cg) € M(C) V
(Q.Cq) € M(v)} is well-typed w.r.t. Cp at the state r.

Proof. Counsider the microstep graph WG .(P.Cp). To prove the if direction. we show
by induction that for any extended state (r.t') of P that. if there exists a path from the
extended state (r.0) to (r.t'). then for all truth value assignment (r’.b) € #. if r € R.
then r constructively evaluates to b in the boolean circuit C. Consider the extended state

(r.t' U (L. b)):

e Suppose the wire definition £ = y; Vy- is in C. Consider the module M(r = yVya):

is enabled at (r.#') when (1) (y].T) € t'. or (2) (y5.T) € t'. or (3) both (y}.F) € ¢ and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 73

(y5.F) € t'. If (1) is true. then by induction hypothesis. y; constructively evaluates to

T in C and therefore £ evaluates to b= T in C. The cases for (2) and (3) are similar.

e The cases for the other wire definitions are similar.

Therefore. if P is well-typed w.r.t. Cp at the state r. then C and hence C is constructive

with respect to v.r.

To prove the only-if direction. assume that the combinational wires in C construc-
tively evaluate to their respective values w.r.t. v.r in the order r,, .r,,.... i.e.. a proof
sequence of the values of the combinational wires. Assume that there is a path in the mi-
crostep graph VG .(P.Cp) from the extended state (r.9) to an extended state {(r.¢'). and
that for all truth value assignment (£'.b) € /. if r € R. then r constructively evaluates to

binC w.r.t. v.r.

e If there exists combination wire & € S¢ such that ' € Var(t'). then let i be the least
integer such that r;, & Var(t'). Suppose C contains the wire definition Iy, =rpVI,.
then there exists j.A < ¢ such that (1) p=n, Ar, =T.or (2) q=n Ar, =T.o0r

(3) p=n,ANq=nAr, =r, =F. Suppose (1) holds. then by induction hypothesis.

’

n, is cnabled at the extended state (r.t'). Moreover. it

((x’,,} .T) € t') and therefore r
can only be assigned the value which r,, constructively evaluates to in C. Cases (2)

and (3) are similar. Also. the cases for the other equality definitions are similar.

e Otherwise. if there exists register £ € R such that £’ € Var(t'). since w! € Var(t').

where r := w, € C. then r is enabled at the extended state (r.t).

Therefore. if C (and hence C) is constructive with respect to e.r. then P is well-typed w.r.t.

Cp at the state rr. 8

5.4 Untyped and Typed Control Problems

Single-step vs. multi-step verification. Given a module P. a state s of P. and a
predicate over the module variables Xp. the single-step verification problemn (P.s.)
asks whether for all states t. if 7[s U t']. then [t]. The single-step verification problem
amounts to evaluating the boolean I{ formula (VXp)(7p — ¢'){s|. where o' results from

v by replacing all variables with their primed counterparts. A run r of a module P is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 74

finite sequence sgs; ... sg of states of P such that rp[s, Us] for all 0 < i < k. The run
r is s-rooted. for a state s of P. if sy = 5. The run r stays in ¢. for a predicate ¢ over the
set Xp of module variables. if ¢[s,] for all 0 < i < k. Given a module P. a state s of P.
and a predicate ¢ over Xp. the multi-step (invariant) verification problem (P.s.yo) asks
whether all s-rooted runs of P stay in . The multi-step verification problem can be solved
by iterating the solution for the single-step verification problem. The number of states.

which is exponential. gives a tight bound on the number of iterations.

Theorem 5.2 (cf. [AH98]) The single-step verification problem is complete for coNP. The
multi-step verification problem is complete for PSPACE.

[n control. it is natural to require that the controller falls into the same module class as the
plant. Consider a module class @ € .\ and a module P € M,,. The module Q € M,, is an «-
controller tor P if (1) P and Q are a-composable. and (2) O¢ = Ip and I = Op. According
to this definition. a controller for P is an environment of P which has no state on its own.
For the control problems we consider in this chaper. the results would remain unchanged
if we were to consider controllers with state. As in verification. we distinguish between
single-step and multi-step control. The single-step (resp. multi-step) control problem asks
if there is a controller for a module that ensures that. starting from a given state. a given
predicate holds after one step (resp. any number of steps). Precisely. for a module class cv.
a module P € M,. a state s of P. and a predicate o over the set Xp of module variables.
the single-step (resp. multi-step) a-control problem (P.s.z) asks whether there is an -
controller @ for P such that the answer to the single-step (resp. multi-step) verification
problem (P ||, Q.s.9) is Yes. If the answer is Yes. then the state s is single-step (resp.

multi-step) controllable by (Q with respect to the control objective .

Fixed-type control. For « € {static. dsynt.dsem.dep}. we also consider a variant of the
control problems in which the type of the countroller module is known (but its transiton
relation is not). An instance (P.v.s.) of the fizred-type single-step (resp. multi-step) -
control problem consists of an instance (P.s.¢) of the single-step (resp. multi-step) a-
control problem together with a type ~ for the controller. For a = static. the type ~
is a dependency relation for an a-controller for P: for o € {dsynt.dsem}. the type v is a
composite dependency relation for an a-controller for P: for @ = dep. the type «v is a variable

dependency relation for an a-controller for P. The instance (P.v.s.) asks whether there

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 75

is an a-controller @ of type v for P such that the answer to the single-step (resp. multi-step)

verification problem (P ||, Q. s.¢) is Yes.

Generality of controllers. For a module class . consider a module P € M,,. a single-
step (resp. multi-step) control objective . and two a-controllers @ and @' for P. The
controller Q is as state-general as Q' if all states s of P which are single-step (resp. multi-
step) controllable by Q" with respect to p are also single-step (resp. multi-step) controllable
by Q with respect to ¢. Moreover. if Q and Q' are equally state-general (i.e.. Q is as state-
general as @'. and vice versa). then Q is as choice-gencral as Q' if the transition predicate
7q' implies 7o (i.e.. Q permits as much nondeterminism as Q'). An a-controller is most
state-general if it is as state-general as any other a-controller. A a-controller is most general
if (1) it is most state-general. and (2) it is as choice-general as any other most state-general

a-controller.

Summary of results. In the following section. we present algorithms for solving the var-
ious types of control problems. The complexity results are simmarized in Table 5.1(a).
We recall that the complexity class DP consists of the languages which are intersections of
an NP language and a coNP language. If n is the input size. the complexity class NE is
Ukso NTIME(2*%). and the complexity class EXP is Uko DT[ME(‘.Z""). By the padding ar-
gument. any problem complete for NE is also complete for NEXP = ., NTIME(2") [Pap94].
Hence. assuming P # NP. for the module classes static. dsynt. and dsem. the fixed-type
multi-step control problems are harder than the multi-step control problems with arbitrary
controller type. In addition. we summarize in Table 5.1(b) all results on the existence of

most state-general and most general controllers.

5.5 Algorithms and Complexity of Control

We determine the complexity for solving the single-step and multi-step a-control
problems for all six module classes & € A. In each case. the multi-step control problem can
be solved by iterating an exponential number of times the solution for the corresponding

single-step control problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 76

Class || Composability Single-Step Multi-Step
Check Arbitrary | Fixed || Arbitrary | Fixed

async O(n) DP — EXP —
moore O(n) 5 — EXP —
static O(n) PSPACE | NE EXP NE
dsynt O(n?) PSPACE | NE EXP NE
dsem coNP PSPACE | NE EXP NE
dep coNP PSPACE | NE EXP NE

(a) Complexity Results.

Class || MSG | MG
async yes | yes
moore yes | yes
static no no
dsynt no no
dsem ves no
dep yes no

(b) Existence of con-

trollers.

Table 5.1: (a) Complexity of composability checking. as well as single-step and multi-step
control for the various module classes. For statically and dynamically typed modules. we
consider both arbitrary and fixed controller types. The quantity n is the size of the module
description. Each problem is complete for the corresponding complexity class. (b) Existence
of most state-general (MSG) and most general (MG) controllers.

5.5.1 Asynchronous control

Given a non-blocking module P. a state s of P. and a predicate £ over the module
variables Xp. the single-step async-control problem amounts to evaluating the boolean

formula

((VO'P)(TP ANIp=1Ip) =) A (3 p)(Tp A (Op = Op) A ,:')){s].

Hence. in the asynchronous case. the single-step control problem is complete for DP. [t fol-

lows from {CKS81] that the multi-step version is complete for exponential time (cf. [HK97]).

Theorem 5.3 The single-step async-control problem is complete for DP. The multi-step

async-control problem is complete for EXP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL T

Proposition 5.4 For every non-blocking module and every control objective. there is u
most general single-step async-controller. and there is a most general multi-step async-

controller.

5.5.2 Moore control

Given a Moore module P. a state s of P. and a predicate o over Xp. the single-step
moore-control problem amounts to evaluating the boolean 5 formula (3/5)(VO,)(1p —

©')[5]. The multi-step hardness proof is similar to the asynchronous case.

Theorem 5.4 The single-step moore-control problem is complete for £5. The multi-step

moore-control problem is complete for EXP.

Proposition 5.5 For every Moore module and every control objective. there is a most

general single-step moore-controller. and there is a most general multi-step moore-controller.

5.5.3 Statically typed control

Consider a statically typed module (P.>p). and let Xp = {ry..... ryt. A linear
order r, ..ry,..... r,,. of the variables in Xp is compatible with the dependency relation =p

if each output variable follows in the ordering the variables on which it depends. Precisely.

Iy .ILpy..... I, is compatible with »p ifforall 1 < j.k < n.ifr, > r, . then k < j. Given
a predicate = over Xp. for each linear order ¢ = r, .r,..... Ly, . we define the boolean
formula

C'(f.»,’i) = ('\11-[:[)(’\13-’:::)"'(’\:n-[:")("’P - 19’)-

where for | <Ak < n.we have \,, =V ifr, € Op.and \,, = 3 if r, € Ip. The following
lemma states that. in order to decide whether a state is single-step static-controllable. it

suffices to consider all linear orders of variable dependencies.

Lemma 5.1 Given a statically typed module (P.~p). a control objective 2 orver Xp. and
a state s of P. the state s is single-step static-controllable with respect to o iff there is a

linear order € of Xp compatible with -p such that C(¢. z2)[s].

The lemma is proved by showing that (1) if a state of the statically tvped module (P.>p) is
output by a statically typed module (Q.>¢g). then there is a linear order ¢ that strengthens

the transitive closure of >~p U >¢ such that C(£.). and (2) if C(¢.) for some linear order

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 78

f. then we can extract from ¢ a dependency relation >g for the controller which ensures

controllability.

Theorem 5.5 The single-step static-control problem is complete for PSPACE. The multi-

step static-control problem is complete for EXP.

The single-step static-control problem is in PSPACE. because we can check each linear order
in PSPACE. Hardness for PSPACE follows from the fact that. given a boolean formula
(Vo) (3yo) - - - (Vry,)(3yn). we can encode the problem of deciding its truth value as the
static-control problem with the control objective ¢ for a module P with the variables Op =
{zo..... rn} and Ip = {yp..... yn}. the valid transition relation rp. and the dependency
relation >p = {(r,.y,) | L < j <i < n}.

Note that in the common special case that the dependency relation >p is empty.
the single-step static-control problem amounts to evaluating the boolean I15 formula (YO,)(3p) (TpA
©")[s]. This case is dual to the Moore case. because here the controller can choose the next
values of the input variables dependent on the next values of all output variables. The
corresponding multi-step problem is again complete for EXP.

We consider now the case in which the type ~o C Ip x Xp of the controller is
fixed. We assume that >p U >¢ is acyclic: otherwise. P and Q are not static-composable.
and the answer to the fixed-type control problems is No. Let Op = {r;..... It and
Ip ={y..... Yk }- Intuitively. for 1 < < k. the next value for y, can be chosen in terms of
the current values of the module variables. as well as in terms of the next value of the output
variables on which y, depends. Hence. a controller with fixed static type > can be thought
of as aset {fi..... S} of Skolem functions: for 1 < i < k. the Skolem function f, provides a
next value for y,. and has as arguments the variables in Xp U {x' € Op | y, »¢ r}. This set

of Skolem functions corresponds to the following boolean formula with Henkin quantifiers
[Hen61. Wal70}:

(V{z' € Op | y1 =g £})(3y))
H(~q.p) = (tp —).
(v {z' € O% |y =0 £})(3,)
The fixed-type single-step static-control problem can be solved as follows.

Lemma 5.2 Given a statically typed module (P.>p). a static controller type ~o C [pxXp

which is static-composable with >~p. a control objective p over Xp. and a state s of P. the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL ™

state s is single-step static-controllable with respect to ¢ by a controller with static type =¢

iff H(=q.2)[s].

Deciding the truth value of a boolean formula with Henkin quantifiers is complete for NE.

even if the formula has the restricted form shown above [GLV95].

Theorem 5.6 The fired-type single-step and multi-step static-control problems are com-
plete for NE.

Unlike Moore modules. a statically typed module may not have a most state-general con-

troller.

Proposition 5.6 There is a statically typed module and a control objective such that there
is no most state-general single-step static-controller. nor a most state-general multi-step

static-controller.

Example 5.10 Let (P.>p) be a statically-typed module having the output variables

Op = {rg.ry.z}. the input variables Ip = {yg. yy}. the transition predicate 7p = (2 = z).

(¥}

and the static type ~p = {rg > yy. £ > y1}. The control objective is o = (z A (y, =
ry)) V (=2 A(yo = ry)). For every state 5 of P there is a static-controller (Q.>¢) such
that s is static-controllable by (Q.>¢) with respect to : If z[s]. then 7o = (4} = rj;) and
yr =@ Lo: If =z[s]. then 7 = (yy = r})) and yo > r;. However. due to the acyclicity
requirement for dependency relations. there is no single static-controller that controls all
states of P. For the same reason. (P.>p) does not have a most state-general multi-step

static-controller for the control objective . 8

5.5.4 Dynamically typed control

The solution of control problems for dynamically typed modules closely parallels

the solution for statically tvped moduiles.

Lemma 3.3 Given a dynamically typed module (P.{(vb.>%) | I < i < m}). a control
4 p p--p

objective © over Xp. and a state s of P. the following assertions hold:

o The state s is single-step dsynt-controllable with respect to o iff there is a linear order

? of Xp which is compatible with all =%. for 1 < i < m. such that C(£. 2)[s].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 80

e The state s is single-step dsem-controllable with respect to ¢ tff there is a linear order

¢ of Xp which is compatible with =% . such that C(£.p)[s].

Theorem 5.7 For a € {dsynt. dsem}. the single-step «-control problem is complete for

PSPACE. and the multi-step a-control problem is complete for EXP.

Hence. the control problems for statically and dynamically typed modules have the same

complexity. This applies also to the fixed-type control problems.

Lemma 5.4 Given a dynamically typed module (P. Dp). a module class a € {dsynt. dsem}.
a dynamic controller type Dg = {(w;\,.>—b) | 1 < i< m} which is a-composable with Dp.
a control objective ¢ over Xp. and a state s of P. the state s is single-step «-controllable

with respect to ¢ by a controller with dynamic type Dg iff H(>-22.,a)ﬂsﬂ.

Theorem 5.8 For a € {dsynt. dsem}. the fired-type single-step and multi-step a-control

problemns are complete for NE.

Dynamically typed modules with svntactic composition do not necessarily have a most
state-general controller. In contrast. dynamically typed modules with semantic composition

always have a most state-general controller. but they may not have a most general one.
Proposition 5.7 The following assertions hold:

o There is a dynamically typed module and a control objective such that there is no most
state-general single-step dsynt-controller. nor a most state-general rmulti-step dsynt-

controller.

o For every dynamucally typed module and every control objective. there is a most state-
general single-step dsem-controller. and there is a most state-general multi-step dsem-
controller. However. there is a dynamically typed module and a control objective such
that there is no most general single-step dsem-controller. nor a most general multi-step

dsynt-controller.

Example 5.11 The statically-typed module (P.>~p) of Example 5.10 can be viewed as a
dynamically typed module (P. Dp) whose dependency relation is the same for every state.
i,e.. Dp = {(T.>p)}. The control objective is ¢ = ((y1 = o) V (yo = i)). There

exists at least two single-step dsem-controllers which control every state of P: the first

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 81

controller (. Dg,) has the transition predicate 79, = (y] =) and dependency relation
{T.y1 > zo}: the second controller @, has the transition predicate 7o, = (y§ = r}) and
dependency relation {T.yo > r,;}: However. there is no most general single-step dsem-
controller. To control P with respect to ¢ in a most general way. a controller Q with the
transition predicate 7 = ((yg = |)V(y} = r5)) would be required. Such a controller can be
typed ouly if dynamic types are generalized to admit disjunctions of composite dependency

relations. B

5.5.5 Dependent type control

Cousider the single-step arbitrary-type control problem ((P.Cp).s.y). It is convenient to
view the control problem as a game between the dependent-type module (P.Cp) and its
controller. The game is piayed on the reduced micro-step graph RMG(P.Cp). obtained
from the micro-step graph MG ,(P.Cp) by pruning for all mired vertices «a. i.e.. vertices
having both outgoing P- and E-edges. all E-edges outgoing from «v. Intuitively. the reduced
graph represents the situation in which the module P has precedence over E in updating
variable values.

Note that every nonterminal vertex of the reduced micro-step graph either has only
outgoing P-edges or has only outgoing E-edges. We call the vertices with only outgoing
P-edges the module vertices. and the vertices with only outgoing E-edges the environment
vertices. Then we solve the game by the following marking algorithm. A terminal vertex
a = (s.t') is marked if Var(t') O X} and p[t]. A module vertex « is marked if all successors
3 of a are marked. An environment vertex « is marked if some successor 3 of « is marked.
The answer to the given single-step unknown-type control problem is Yes iff the vertex (s.)
is marked.

If the answer to the control problem is Yes. then the marking algorithm also
suggests a way of synthesizing a dependent-type controller (Q.Cy) as a set of guarded
commands I'. Given a state s € Sp. denote by v, the characteristic formula of s. defined
by xs = A{r | (c.T) € s} AA{-z | (£.F) € s}. The controller has the output variables
Og = Ip and input variables [g = Op. For every marked environment vertex a = (s.t')
in the reduced micro-step graph. choose one marked successor (s.t' U {(z’.b)}) of a. and
add to ' the guarded command [x; A yv — &’ = b. Like composability checking. the

single-step unknown-type control problem for dependent-type modules is no harder than its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 32
counterpart for dynamically typed modules.

Theorem 5.9 The single-step unknoun-type control problem for dependent-type modules
ts PSPACE-complete. The multi-step unknown-type control problem for dependent-type
modules is EXP-complete. Moreover, if the answer is Yes, then a dependent-type controller

can be synthesized.

The fixed-type control problem is computationally harder than the unknown-type
control problem. although it is no harder than its counterpart for dynamically typed mod-
ules. The additional complexity is due to the fact that we need to construct explicitly the

micro-step graph.

Theorem 5.10 The single-step fixred-type control problem for dependent-type modules is
complete for NE. The mutli-step fired-type control problem for dependent-type modules is
complete for NE. Moreover. if the answer is Yes. then a dependent-type controller can be

synthesized.

Proof. To solve the fixed-type single-step control problem ((P.Cp).Cg.s.). one can
guess a subgraph G of the reduced micro-step graph RMG,(P.Cp). and check that (1) the
vertex (s.0) is in G: (2) for all module vertices e in G. all successors of a are also in G:
(3) for all environment vertices « in G. there is exactly one successor 3 of o in G such that
(c.3) is an edge in G: (4) for all terminal vertices (s.t'). we have o[t]: (5) the controller
respects the variable dependency relation Cg at all environment vertices in G. All of these
conditions can be checked in time polynomial in the size of G. NE-hardness comes f{rom

the fact that dependent-type modules can encode dynamically tvped modules. @

Like dynamically-typed modules. a dependent-type module always has a most

state-general controller. but may not have a most general controller.

Proposition 5.8 For every dependent type module and every control objective. there is a
most state-general single-step dep-controller. and there is a most state-general multi-step
dep-controller. However. there is a dynamically typed module and a control objective such

that there is no most general single-step dep-controller. nor a most general multi-step dep-

controller.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 83

Example 5.12 The dynamically-typed module (P. Dp) in Example 5.11 can be viewed
as a dependent-type module (P.Cp) such that Cp = {(T.2 = U{y | £ >" y}) | £ € Xp}.
Similarly for the controllers (Q,. Dg,).t € {1.2} can also be viewed as the dependent-type
modules (Q,.Cgq,). However. there is no single dependent-type controller whose transition
relation implies both 7o,.i € {1.2}. This is because even dependent-type modules do not

atlow disjunction of dependency relations. 8

5.5.6 Unrestricted control

One may be inclined to define the following "unrestricted synchronous control
problem™: given a non-blocking module P. a state s of P. and a predicate ¢ over Xp. is
there a module Q composable with P such that (1) the synchronous composition P}|Q is
non-blocking. and (2) the answer to the single-step {resp. multi-step) verification problem
(PhQ.s.) is Yes. This formulation. however. makes no distinction between output and
input variables. and thus permits the controller Q to arbitrarily constrain the output vari-
ables of P. as long as the compound system PJ|Q is non-blocking. Thus. the ~unrestricted
synchronous control problem”™ is not a coutrol problem at all in the traditional sense. be-
cause it simply asks for the existence of a transition (in the single-step case) or run (in the
multi-step case). The single-step solution amounts to evaluating the boolean £ formula
(3.Xp) 7P A ¢')[s]. and like invariant verification. the multi-step problem is complete for
PSPACE. Note that if the non-blocking requirement (1) is also dropped. then the appro-

priate single-step formula is (3Xp)(7p — ¢')[s]. which permits the controller to block the

progress of P.

5.5.7 The relative power of controllers

Recall the module class ordering async < moore < static < dsynt < dsem <

dep. The following proposition establishes that this ordering strictly orders the power of

controllers.

Proposition 5.9 For all module classes .3 € \ with « < 3. there is a module P € M,,.
a control objective o over Xp. and a state s of P. such that s is not single-step (resp. multi-

step) a-controllable with respect to . but s is single-step (resp. multi-step) 3-controllable

with respect to .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 5. COMPOSITION AND CONTROL 84

Example 5.13 As an example showing that an async-controller is strictly less powerful
than a moore-controller. consider the module P which has one output variable Op = {r}
and one input variable Ip = {y}. The transition relation for P is 7p = (x5 r’). The single-
step control objective is ¢ = (r & y). Clearly. the states £ = T.y = Fand r = F.y = T are
not asynchronously controllable. since at most one module can make a transition at any step.
However. these states can be output by the Moore controller Q such that 7g = (¢’ =). In

fact. this controller controls every state of P.8

Example 5.14 Consider the same control problem for module P in Example 5.13. except
that the transition predicate for P is now 7p = T. Clearly. no state of P can be output
by a moore-controller. But there is a static-controller Q that controls every state of P:

1@ = (y' ®). with static type y > r.8

Example 5.15 This example shows that a static-controller is less powerful than a dsynt-
controller. Consider Example 5.6. Our single-step control objective to module Q is p =
(x = -z). Clearly no state of s can be controlled by a static-controller. But all states can

be controlled by a dsynt-controller. namely P;.8

Example 5.16 Counsider the single-step control problem in Example 5.10. Any dsynt-
controller for module P can control either the states with = = F. or the states with = = T.

but not both. However. every state can be controlled by the dsemn-controller @ defined as
7Q = (2A(yy = £y)) V(-2 A(yg = 1)), and with dynamic type Do = {(z.y1 > £o).(=z.yo >

r1)}. 8

Example 5.17 Let P be the dynamically-typed module with [p = {u. v} and Op = {r}.

and the following guarded commands:

v — =

(P.Dp)= |~/ > =71

| v —= £ =F
The control objective is £ = v. There is no dynamically typed controller (at any state).
because such a controller would have r dependent on v. and P can set r to be —v. But
a dependent-type controller can change the dependencies. namely. having r not dependent

on any variable and having v dependent on . The following is a dependent-type controller:

F
(Q.Co) = A . |

It = v = ¢

7

It = u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

Chapter 6

Synthesis of Uninitialized Systems

In sequential synthesis. we transform a temporal specification into a reactive system
that is guaranteed to satisfv the specification. A closed systemn that meets the specification
can be extracted from a model that satisfies the specification. that is. the syvnthesis of
closed systems amounts to solving a satisfiability (3) problem [ECS82]. However. as argued
for transformational systems in [MWB80]. and for reactive systems in [ALW389. Dil89. PR89a].
the synthesis of open systems. which interact with an unknown environment. requires the
solution of a V3 problem: for all sequences of inputs. there exists a sequence of outputs
that satisfies the specification. Consider. for example. a scheduler for a printer that serves
two users. The scheduler is an open system. Each time unit it reads the input signals .J1
and ./2 (a job sent from the first or second user. respectively). and writes the output signals
Pl and P2 (print a job of the first or second user. respectively). The scheduler should
be designed so that jobs of the two users are not printed simultaneously. and whenever a
user sends a job. the job is printed eventually. Of course. this should hold no matter how
the users send jobs. We can specify the requirement for the scheduler in terms of a linear

temporal logic (LTL) formula v [Pnu8l]. such as
a(J1 — o(=JLUPL)) A O(J2 = C(-J2U P2)y A T~ (J1 A J2).

Evidence of s satisfiability (note that w is satisfied in a structure in which the four signals
never occur) is not of much help in extracting a correct scheduler: while such evidence only
suggests a scheduler that is guaranteed to satisfy ¢ for some input sequence. we want a
scheduler that satisfies « for all possible scripts of jobs sent to the printer.

We now make this intuition formal. A stream transducer is a function that. given

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 86

an infinite sequence of inputs. produces an infinite sequence of outputs. In particular. for
the set [of inputs signals and the set O of output signals. a stream transducer is a function
from (2/)* to (29)*. A stream requirement is a binary relation between input streams and
output streams: that is. a stream requirement is a subset of (27)* x (29)~ or. equivalently.
a set of infinite words in (2/99)~. The stream transducer T realizes the stream requirement
R iff for every input stream 7 € (2/)~., we have R(7.T(7)). Stream requirements can be
specified by LTL formulas over the set I U O of atomic propositions. or by autornate on
infinite words over the alphabet 2/“Y . Stream transducers can be implemented by state
machines that proceed ad infinitum. The finite-state implementation of a stream transducer
is a deterministic finite-state machine that. from a given state on a given set of input signals.
generates a set of output signals and moves to a successor state. The realizability problem
(RP) asks. given a stream requircment R. if there is a finite-state implementation of a
stream transducer that realizes R. The sequential synthesis problem. then. is to find a
finite-state implementation (if one exists). The RP was first stated by Church [Chu62] for
stream requirements specified in the sequential calculus. Since then. several solutions for
the RP have been studied: [BL69. Rab72] showed that the RP is quadratic (exponential)
if the specification is a deterministic (nondeterministic) Biichi automaton: [PR89a] showed
that the RP is doubly exponential if the specification is an LTL formula (researchers from
control theory also studied the RP in the context of supervisory control for discrete-event
systems {[RW89]). The solutions to the RP can be extended. within the same complexity
bounds. to construct finite-state implementations. so that a solution to the RP immediately
provides a solution also to the sequential synthesis problem [Rab70. MS95. KV99].

[n practice. sequential hardware is often designed to operate without prior initial-
ization: that is. it is supposed to satisfy its input-output requirements if started from any
state. UUninitialized state machines. which model such hardware designs. require no reset
circuitry and therefore have an advantage of smaller area. A well-known example of an
uninitialized state machine is the [EEE 1149.1 standard for boundary-scan test [{Com90)].
Uninitialized state machines are also necessary for the safe replaceability of sequential cir-
cuits [SP94]. where a state machine is replaced by another one in such a way that the
surrounding environment is unable to detect the changes. The replacing state machine may
power-up in an arbitrary state. and is therefore uninitialized. The verification problem of
deciding whether an uninitialized state machine safely replaces another machine. is studied

in [SP94]. The optimization problem for uninitialized state machines is studied in [QBSP96].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 87

In this dissertation. we study the synthesis problem for uninitialized state machines.

Given a stream requirement R. the uninitialized realizability problem (URP) asks
if there is a finite-state implementation A/ that satisfies R no matter what the initial state
of M is. The uninitialized synthesis problem. then. is to find such an M (if one exists).
We study the URP for stream requirements that are specified by LTL formulas or Biichi
automata. We consider deterministic and nondeterministic Bilichi automata. as well as
universal Biichi automata. which accept a word iff all runs are accepting. and alternating
Bichi automata. which allow both nondeterministic and universal branching modes. The
solution of the URP is quite straightforward. and is done by a reduction to the RP: if the
stream requirement R is an LTL formula. then the URP for R can be reduced to the RP
for the LTL formula always(R) = OR: if R is a Biichi automaton. then the URP for R can
be reduced to the RP for the automaton always(R). which is obtained from R by adding a
universal self-loop at the initial state. It is not hard to see that an infinite word w (i.e.. a
pair of input and output streams) satisfies always(R) iff w and all its suffixes satisfv R. This
implies that R is realizable by an uninitialized implementation iff always(R) is realizable. As
in the initialized case. a solution to the uninitialized synthesis problem follows immediately
from a solution to the URP.

While the above solution is straightforward. it may lead to upper bounds that
are exponentially worse than the complexity of the RP for the corresponding formalism.
For example. while for LTL specifications both RP and URP are doubly exponential. for
deterministic Biichi automata. where the RP is quadratic. the presented solution of the URP
is exponential. The reason is that the automaton always(R) has a universal branching mode.
which R may not have. and this makes the URP exponentially harder. [n particular. if R is
a deterministic automaton. then always(R) is universal. and if R is nondeterministic. then
always(R) is alternating. Can the exponential blow-up be avoided by a more sophisticated
solution? We answer this question in the negative by proving corresponding lower bounds
for the URP of all discussed formalisins. Unlike the upper bounds. the lower-bound proofs
are not immediate. and are the main technical contributions of this work. Our results imply
that specification formalisms that support an easy implementation of the always operator.
such as LTL and alternating automata. have. unlike deterministic and nondeterministic
automata. already “built-in” the complexity of uninitialized synthesis.

We say that a streamn requirement R is uninitialized if for all infinite words w.

we have w satisfies R iff all suffixes of w satisfy R. This is the same as asking if the two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 88

formulas. or automata. R and always(R) are equivalent. For example. the LTL specification
Op for an output signal p is uninitialized. as w satisfies Op iff all the suffixes of w satisfy Op.
For uninitialized stream requirements. the URP coincides with the RP. As the equivalence
problem is easier than the corresponding URP in all cases. it follows that for specification
formalisms whose URP is harder than RP. there is an advantage to first checking if the
specification is uninitialized. In the final section. we show that the uninitialized specification
problem (USP). which asks if a given stream requirement R is uninitialized. is. for all

considered formalisms. no easier than the general equivalence problem.

6.1 Preliminaries

Trees. Given a finite set D of directions. a D-tree is aset T C D* suchthatif r-d € T.
where r € D* and d € D. then also r € T. The elements of T are called nodes. and the
empty word € is the root of T. For every r € T. the nodes r-d € T. for d € D. are
the successors of r. Each node r € T has a direction dir(r) in D. namely. dir{e) = "
for some designated ¢ € D. and dir(r-d) = d. A path 7 of the tree Tisaset # C T
such that € € 7. and for every r € 7. exactly one successor of r is in #. Given two finite
sets D and . a T-labeled D-tree is a pair (T.V') where T is a D-tree. and V" : T — &
maps each node of T to a letter in £. Ve extend 1" to paths in the straightforward way:
for a path @ = {e. wg. wow,....}. we have V(7) = V(e)V(wo)V (wow;)... We say that a
(D x X)-labeled D-tree (T.V") is D-erhaustive if T = D*. and for every node w € D*. we
have V(w) = (dir(w).o) for some o € E.

Alternating Biichi Automata. For a given finite set .X. let B*(.X) be the set of positive
boolean formulas over X. A subset Y C X satisfies a formula 8 € B*(X) if the truth
assignment that assigns true to the members of Y and assigns false to the members of X'\ Y
satisfies 8. An alternating Biichi automaton U = (L. U . ug.d. F) consists of an alphabet X.
a set U of states. an initial state ug € U. a transition function § : U x ¥ — B~ (L’). and
a set F' C U of accepting states. A run of i on an infinite word w = wywy ... in T+ is
an infinite U-labeled D-tree (T.r). where D = {1..... [U}}. such that r(e) = ug and the
following holds: for all nodes £ € T. if |z| = ¢ and r(r) = u and d(u.w;) = 6. then r has
k successors rIj..... Ii. for some k& < |U]. and {r(z{)..... r(z)} satisfies 8. A run (7.r)
is accepting if every path of (7.r) visits the accepting set F infinitely often. An infinite

word w is accepted by U if there exists a run (7.r) on w such that (T.r) is accepting. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTENMS 89

language L(U) of U is the set of infinite words accepted by Uf.

Finite State Machines. A finite state machine (FSM) M = ([.0.Q.qin. p. \) consists of
a finite set [of input signals. a finite set O of output signals. a finite state set Q. an initial
state ¢in € Q. a transition function p : Q x 2/ — Q and an output function A : Q = 29. We
assume that there is a special output signal init such that init € A(q) iff ¢ = q;n. We also
assume that there is a nonempty set In(qi,) C 2! such that for each ig € In{qn). there is
a g € Q such that p(q.lg) = qn: that is. the state q,, is reachable via some input (if this is
not the case. we can add a new state from which ¢,, is reachable). An FSM M interacts
with its environment through its input and output signals. Initially. M is at the initial state
Go = qin- The environment initiates the interaction by inputting some input iy € In(q.,).
Then. M starts operating by outputting Aqg). to which the the environment replies with
some {; € 2/, The FSM M replies by moving to the state q; = p(go. i) and outputting
A(q1). Interaction then continues ad infinitum.

Hence. the FSM M can be viewed as a strategy Sy : (21)* — 29 that maps
every finite sequence of inputs to an output. To define Sy formally. we first define the
function Cyy : (20)" = Q@ that maps cach finite input sequence to the state visited after
the sequence has been read: Cyr(e) = . and Cy{iy .. 1n) = Capiy .. in-1)-in). The
strategy Sy; induced by M is then defined for every w € (2/)* by Sy () = MCy(w)).
Note that the first input iy merely initiates the interaction and does not have any effect
on the behavior of M: it is disregarded in the definition of Cy;. Each infinite sequence
ioiy .- € In(qy) - (21)* induces a computation (ig. Syi(€))(i1. Sar(i1))(ia. Syp(irin))... €
(2! x 29)% of M. The language L(M) is the set of all computations of M. We refer to the
language also as a set of infinite words in (2/~9)~. where iyi, ... induces the computation
(i0 U Sar(€)) - (iy U Sar(i1)) « (2 U Syp(iyia)) ... € (21%O)<. The strategy Sy; induces. for
a given first input iy € In(q,n). a computation tree whose branches correspond to external
nondeterminism caused by different inputs. namely. the 2/-exhaustive (27 x 29)-labeled 2/-
tree ((27)*. V") such that each node w € (2! x 29)* is labeled by V(w) = (dir(w). Sy (w)).

where dir(e) = iy. Note that all computation trees of M/ differ only in the first input.

6.2 The Uninitialized Realizability Problem

In this section we define and solve the uninitialized realizability problem. We first

start with the (initialized) realizability problem. Given a specification R over the input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 90

signals [and output signals O the Realizability Problem (RP) for R asks if there is an FSM
M such that for all the words w € L(M). we have w = R. If so. we say that R is realizable
by M. The specification R can be an LTL formula. or a finite-state Biichi automaton. If
R is an LTL formula. then the atomic propositions of R are I U O. and the relation = is
the usual satisfiability relation. If R is an automaton. then the alphabet of R is 2/ x 29,
and the relation = is the language membership relation. that is. w = R iff w € L(R).
The realizability problem is closely related to Church’s solvability problem [Chu62]. and
it has been shown that the problem is solvable in quadratic (exponential) time if R is a
deterministic (nondeterministic) Biichi automaton [BL69. Rab72. Saf88. PR89al. and in
doubly exponential time if R is an LTL formula [PR89a. KV99].

An uninitialized FSM M = ([.0.Q.p. \) is similar to an FSM except that there
is no initial state. The language L()M) = quQ L(Mg) of M is simply the union of the
languages L(M,). where M, = (1.0.Q.q.p. \) is the FSM obtained from M by regarding
the state ¢4 € (Q as the initial state. Given a specification R over the input signals [and
output signals (J. the uninitialized realizability problern (URP) for R asks if there is an
uninitialized FSM M such that w = R for all words w € L()M). If the answer is ves. we

say that R is wnminitialized realizable by M.

6.2.1 Reducing URP to RP

We solve the URP by reducing it to the RP. For that. we define. given a speci-
fication R over the input signals [and output signals O. the specification always(R) over
I and O such that. for all words w € (2! x 29)~. we have w satisfies always(R) iff all the
suffixes w' of w satisfy R. It is not hard to see that the URP for R can be reduced to the

RP for always(R). as stated in the Theorem below.

Theorem 6.1 Let I and O be respectively finite sets of input and output signals. and let R

be a specification over I and O. Then R is uninitially realizable ff always(R) is realizable.

Proof. Assume first that R is uninitially realizable. Let M = ([.0.Q.p.A) be an
uninitialized FSM that uninitially realizes R. Consider an FSM M, = ([.0.Q.q.p. \).
for some ¢ € Q. We show that M, realizes always(R). Consider an input sequence
T = ig.i1-t2... € In(q) - (21~ to M,. The sequence induces the computation = =

(20. Sar,(€)). (i1- Sar, (21)). (i2. Sar, (i142)). Foreachsuffix #/ = (i;. Sy, (i1 ---4))). (4,51 Sy, (i1 --- ¢

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 91

of m. the state ¢; = Cyy, (ig ij—1) is such that 7/ is a computation of My . Hence. since
M uninitially realizes R. it must be that 7/ satisfies R. It follows that all the suffixes of all
the computations of .M, satisfy R. thus M, realizes always(R).

Assume now that alweys(R) is realizable. Let M, = ([.0.Q.qun.p. A} be the
finite state machine that realizes always(R). We can assume that every state ¢ € Q is
reachable from the initial state ¢;, (otherwise. we restrict A, to its reachable part). It

is not hard to see that the uninitialized FSM M = ([.0.Q. p. \) realizes R. Indeed. since

every word w € L(M,). for any q € Q. is a suffix of some word w' € L(M,,). then. by the

hypothesis. w = R. 8

6.2.2 Constructing always(R)

Given a specification R. we construct the specification always(R). First. if R
is an LTL formula. it is not hard to sce that always(R) = QR. Now. if R is a Biichi
automaton U = (L. 0. ug. 4. F). then always(U) = (.0 U {uh}. uy. 8. F U {uj}). where u
is a new state. and for all & € £. we have ' (uy.0) = d(ug.0) A wy: and for all w € U, we
have o'(u.o) = d(u.o). Intuitively. the automaton always(U) behaves like U except that
aliwrays(U) always sends a copy of itself to the suffix of the input word whenever it makes a
transition. It follows that for every word w. not only w has to be accepted by U. but so do
all its suffixes. Note that one copy of always(U) keeps visiting uy forever. which is why we

had to duplicate the original initial state. Formally. we have the following.

Proposition 6.1 Let U = (X.U.ug.d. F) be an alternating Biichi automaton. For all

words u € £¥. the automaton always(U) accepts w iff U accepts all the suffires of w.

Proof. Consider a D-tree T. For a node £ € T. let level(r) be the level of the node. where
level(e) = 0 and if the node y is a successor of r. then level(y) = level(r) + 1. A subtree
(Tr.re) of a E-labeled D-tree (T.r) withroot £ € T.isa tree such that y € T, itff r-y € T.
and re(y) = r(z-y).

Consider an infinite word w = wow, ... € (‘2’ x 29~ in L{always(U)). Let (T.r)
be an accepting run of U/ on w. By the definition of always(lf). each level of (T.r) has one
node r with r(x) = ug. Given a suffix w’ = w;w, of w. let r be such that level(r) =
and r(r) = ug. and let (T;.r;) be the subtrce of (T.r) with root r. We can obtain from

(Tr.rr) an accepting run of U/ on the suffix w’ = w;w;+ ... of w by replacing the label of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 92

the root node with ug. and by pruning the tree in such a way that every node has exactly
all the successors y with r.(y) # ug. Hence. if always(U) accepts w. then U accepts all
suffixes of w.

For the other direction. assume that U accepts all the suffixes of w. Let (T;.r;)
be the accepting run tree of i on w' = w;w;4; with the label at the root node replaced
by uj. ie.. r(e) = uj. We successively build an accepting run (T.r) of always(U) on
w. Let (T°r% = (Ty.rq). At each node r € T*. for i > 0. if ri(z) = ug. then we
add to r as successor the subtree (T).r,). for j = level(r) + 1. We claim that the tree
(T.R) = |U,5o(T".7") is a legal accepting run of always(U) on w. First. since each node
labeled by ug has a successor labeled by wuj;. the run is legal. Then. since each path of (T. R)
either eventually corresponds to a path of (T,.r,). for some j. or visits ug forever. the run

is also accepting. 8

6.2.3 URP Complexity

As described in Section 6.1. we can now solve the URP for R by solving the RP for
always(R). The complexity of this naive solution depends on the type of the specification

elways(R). In Table 6.1 below we describe the type of always(R) given the type of R. It

L R always(R) 1
an LTL formula an LTL formula
a deterministic or universal Biichi automaton a universal Biichi automaton
a nondeterministic or alternating Biichi automaton | an alternating Biichi automaton

Table 6.1: The cost of moving from R to always(R).

follows that when R is a deterministic or a nondeterministic Biichi automaton. the type of
always(R) is richer than that of R. which in turn would imply that the URP is harder than
the RP. [n this section we analyze the complexity of the URP and then show that this naive

solution is optimal.
Theorem 6.2 The URP for LTL is complete for 2EXP.

Hence for LTL specifications. the URP is no harder than RP.

Proof. The upper bound follows from the fact that the RP for LTL is in EXP [PR89a].
and always(R). for R in LTL. is also in LTL. For the lower bound. we show that the URP

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 93

is at least as hard as the RP. which is 2EXP-hard [Ros92]. Indeed. the RP for an LTL

formula ¢ can be reduced to the URP for init — ¢. 8

We now turn to consider the various types of Biichi automata. While the upper
bounds are easy. the lower bounds require complicated generic reductions. To illustrate the
proof ideas. we first consider the URP for closed FSMs. in which I = @. The behavior of such
FSMs is independent of the environment. and the realizability and satisfiability problems
coincide. In particular. for specifications given in term of deterministic Biichi automata.
the realizability problem for FSMs with [= ¢ is complete for NLOGSPACE. We show that

the transition to uninitialized FSM makes the problem exponentially harder.

Proposition 6.2 The URP for deterministic Biichi automata and closed FSMs is com-
plete for PSPACE.

An automata-theoretic problem that is well-known to be complete for PSPACE

is the universality problem for nondeterministic automata [HU7T9. Wol82]. On the other
hand. the universality problem for deterministic automata is complete for NLOGSPACE.
The standard PSPACE lower bound proof is by reduction from the membership problem
for polynomial space Turing machines: given a polynomial space Turing machine T. one
constructs a nondeterministic Biichi automaton U such that U accepts invalid or rejecting
computations of T. The URP as stated in Proposition 6.2 also has some Havor of “univer-
sality™. It comes from the requirement that the model w (i.e.. an infinite word) has to be
“suffix-closed”. i.e.. both w and all its suffixes need to satisfy the specification. However.
the lower bound proof is very different. The proof is by the construction of a deterministic
Biichi automaton which accepts an input word w as well as all its suffixes iff w is a valid
and accepting computation of T. Since the universality problem of deterministic Biichi au-
tomata is easy. the ~suffix-closure™ property is as strong a requirement as the universality
requirement of a nondeterministic Biichi automaton.
Proof of Proposition 6.2. Consider a deterministic Biichi automaton R. When [= ¢.
the set 27 is a singleton and the universal Biichi automaton always(R) is realizable iff its
language is not empty. Since the latter can be checked in PSPACE [MHS84. VWO4]. the
upper bound follows.

For the lower bound. we do a reduction from the membership problem of a polyno-

mial space Turing machine. Let T = ([.Q.—.qqg. Facc. Fre;) be a polynomial space Turing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 94

machine. where Q is the set of states. go is the initial state. F,.. C Q and F,., C Q are
respectively accepting and rejecting states. and —: Q xI' > Q@ x ' x {L. R} is the transition
function. Assume that T starts with the initial configuration. i.e.. T at state ¢; with its
reading head pointing at the leftmost cell of the empty tape. We also assume that once T
reaches an accepting configuration. i.e.. ¢ € Fy.. it “cleans”™ the tape content and restarts
from the initial configuration. The machine T accepts the empty tape iff T has an infinite
computation visiting the initial and accepting configurations infinitely often.

Assume T uses s(n) tape cells to process an input of length n. We encode a
configuration of T by a string 4v1v2 ... (4. %) ... Yg(n) I (29)*. where subsets of the output
signals O are selected to encode the the alphabets TU(Q x [)U{#}. i.e.. 20 = TU(Q x [)U{4}.
That is. a configuration starts with the letter 1. followed by a string of letters v, € ['. except
for one in @ x . The meaning of the string is that ~, is the letter on the j-th tape cell. while
the letter (q.v;) indicates in addition that T is at state ¢ with its reading head pointing at
the i-th tape cell. Let ¢ = {010a...0,,). and ¢ = fa\a} ... 0] be two configurations. If ¢/

is the successor of ¢. then we know by the transition function of T what 4] for I < i < s(n)

should be. Let nert(o,_.0,.0,.) denote our expectations for #;. That is.
o nect(Yi—1. 7. Yer1) = nert(v vie1) = next(y,-17-1) = Y.

v v if (q.vi-) = (g v L)
e nect((q.vi-1)- Y. nist) = next((q.vi-1)- 7. 4) = l ‘ [

(q-7) i (q.vz) = (¢ v _,.R).
o next(Y,-1.(q-%). Yis1) = nect(d. (q.%). vor1) = next(vi-1.(q. %:).2) = ~,. where (q.~,) —
(¢ 7-1-A).
Y if (q.7e1) = (¢ %_. L)
(g-7) if (¢ 1) — ((11.,7‘/_[' R).

o next(v,—1-%-(q.-7+1)) nert(d.v. (q.vi=1)) =

o nert(oy,,.3.01) =3¢

We define a deterministic Biichi automaton U = (U.29. uy.d. F) such that I ac-
cepts an input word w = wquw; ... iff w satisfies the following conditions: (1) the next
relation of T is satisfied for the first three letters in w. i.e.. w2 = nect(wy. wy. ws): and
(2) the initial and the accepting configurations are eventually reached. It follows that &/
accepts an infinite word w as well as all its suffixes iff T has an infinite computation visiting
the initial and accepting configuration infinitely often. Both conditions can be specified by

a deterministic Biichi automaton of size polynomial in T.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 95

Thus. if there exists a word w such that w and all its suffixes are accepted by U.
then there exists a suffix v’ of w such that v’ encodes an accepting run of T. On the other
hand. if T has an accepting run. then it can be encoded as an infinite string w € X all of

whose suffixes (including w itself) are accepted by Y. §

We now consider the URP for open FSMs. i.e.. when [# §. While the RP for
deterministic Biichi automata is quadratic. the following theorem states that the URP for

open FSMs is harder than that for closed FSMs and the RP for open FSMs.

Theorem 6.3 The URP for deterministic or universal Bichi automata is complete for
EXP.

Proof. Consider a deterministic or a universal Biichi automaton Y. The automaton
always(U) is a universal automaton. whose RP can be solved in EXP [Rab72. MS95].

For the lower bound. we use the input signals in [in order to encode branches
and extend the proof of Theorem 6.2 to apply to alternating Turing machines. Consider
an alternating linear-space Turing machine T = ([.Q,.Q..—=.qo. Fyce. Frvy). where the
disjoint sets of states @, and (., are respectively the universal and existential states. while
the disjoint sets of states F,.. € Q. and F,,, C Q. are respectively the accepting and
rejecting states. Their union is denoted by Q. Our model of alternation prescribes that
—C QxI'x@xT x{L. R} has a binary branching degree. When a universal or an existential
state of T branches into two states. we distinguish between the left and the right branches.
Accordingly. we use (q.a) —! (¢.b. ;) and (q.a) =" (gr.b.. \;) to indicate that when T
is in state ¢ € Q, UQ, reading input symbol «. it branches to the left with (q;. 5. ;) and to
the right with (q,.b.. A,). We also assume that once T reaches an accepting configuration.
it “cleans™ the tape content and restarts from the initial configuration (i.c.. empty tape and
initial state at the left end of the tape).

Assume T uses s(n) cells in its working tape in order to process an input of length
n. A configuration of T is encoded in a similar way to how a configuration of a polynomial
space Turing machine is encoded. except that a configuration starts with either % or 2.
The letter 3 € {%.3.} marks the beginning of a configuration: moreover. since T has an
existential mode. i.e.. when the state q of T is in Q.. the letter § also indicates a guess
(left or right) for the accepting successor. A computation of T can then be encoded by a
computation tree whose branches describe sequences of configurations of T. Note that the

computation tree is unique if we ignore the distinction between %, and .. A runof T is a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 96

pruning of a computation tree in which all the universal configurations have both successors
and all the existential configurations ¢ = 8v;v2...(q.7:) ... 7s(n) have only the left (resp.
right) successor if § = §; (resp. ;). The run is accepting if all branches in the pruned tree

visit the initial and accepting configuration infinitely often.

Given an alternating linear-space Turing machine T as above. we construct a
deterministic Buchi word automaton U such that U is uninitially realizable iff T has an
accepting run on the empty tape (clearly. proving a lower bound for deterministic automata.
implies a bound also for universal ones). The automaton ¢ has input signals I such that
the subsets of I encode the set {l.r}. i.e.. 2/ = {l.r}. It also has output signals O such

that 20 = {#,.3,} UTC U(Q x). Let ¢ = d010,...0,,, and ¢ = §'olo)...0 be two

'

stn)
configurations. and let (dy. §)(di. o)) ... (dygn). On))(dfy. &) (d) . 0Y) ... (d;(n).a;(n)) be a word
in (27 x 29)*. The letter d indicates the direction of ¢ with respect to ¢ if d = L. then
¢’ is the left successor of c. and if dj, = r. then ¢ is the right successor of ¢. Note that the
direction of ¢/ is given by dj,. not by the letter 4 or ': the letter ¢ is only the guess that T
makes at ¢ if ¢ is an existential configuration. If § = §; (resp. 2.). then T guesses that the
left (resp. right) successor of ¢ leads to an accepting run: if the guess of T is different from
the successor information given by the input. we say that there is a mismatch between the
input and the guess of T at the configuration. That :=. a mismatch happeuns at ¢ with 3 = 3,
and dj = [. as well as with § = 4 and dj = r. Recall that we require every path of the
computation tree of T to be legal and accepting. On the other hand. since T is alternating.
only the paths in the computation tree that are guessed in existential configurations need

to be accepting. We use 3; and g, in order to detect mismatches. where paths that contain

a mismatch are considered accepting.

If the configuration ¢’ is a successor of the configuration c. we know by the tran-
sition relation of T what the "next™ relation is. Now we have two “next” relations. one
for left branching and one for right branching. Let nect! and nezt”™ be the “next” relations
for the left branch and right branch respectively. The definition of nert' (resp. nezt")is
similar to that of the nert relation in the polynomial space Turing machine case. except
that only the transition function —! (resp. —") is considered. the letter £ is in {2.3,}. and

next!(oy(n-4.07) € {#-3r}-

The automaton U can be constructed as follows. On input of a word w =

(do.79)(d1.01) - ... U checks the following:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 97

I. The "next” transition relations of T are satisfied. te.. o412 = nert!(gg. o1. 02) if

dy = 1. and o4p) 42 = next™(0g.0y.02) if dj = r: and
2. cither of the following is true:

(a) Eventually there is a mismatch in the direction specified by the input and T at
an existential configuration. i.e.. w contains the string
(do-30) ---(dj. (q.7))) - - - (dsiny- Ty) dgy. 3). where ¢ € Q. and either 4o = i,
and dj = 1. or §g = § and dfy = r.

(b) The initial configuration is eventually reached. and thereafter the accepting con-

figuration is also eventually reached.

All the above conditions can be specified by a deterministic Biichi word automaten linear
in the size of T,

Given a path w of a (2/)-exhaustive (27 x 29)-labeled 2/-tree ((2/)*. 7). if U accepts
w and all the suffixes of w. then by condition (2). w is a valid branch of the computation
tree of T: moreover. by condition (3). if «w is a branch guessed by T. then infinitely often the
initial and accepting configurations are reached. Thus. U accepts all suffixes of all branches

of ((27)*.7) iff T has an accepting run. 8

The RP for nondeterministic Biichi automata can be solved in exponential time.
while the RP for alternating Biichi automata requires doubly exponential time. The fol-
lowing theorem shows that the URP for nondeterministic Biichi automata is exponentially

harder than the RP. while that for alternating Biichi automata. there is no additional cost.

Theorem 6.4 The URP for nondeterministic or alternating Biichi automata is complete
for 2EXP.

Proof. Consider a nondeterministic or an alternating Biichi automaton {{. The automaton
always(U) is an alternating automaton. whose RP can be solved in 2EXP [Rab72. MS95].
The proof of the lower bound is similar to that for the URP for deterministic Biichi
automata in Theorem 6.3. except that now the reduction is from the membership problem
of an alternating exponential space Turing machine.
Consider a Turing machine T = ([.Q,.Q..—.qg. Faec. Fre)) that uses s(n) =
nt g tape cells. for some & > L. We construct a nondeterministic Biichi automaton V

such that V is uninitially realizable iff T has an accepting run. We first define the encoding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 98

of a configuration. A configuration of T consists of a block py ... p,«o of the form {0. 1}"" -3
for ¥ =TU(Q x) U {#.8-}- The meaning of a block is that the j-th tape cell. where j is
represented in binary as p, ...p,« with the bit p . being the least significant bit. contains
the letter o. For example. the block 0117y encodes the fact that the third tape cell contains
the letter 4. A configuration is therefore a sequence BoB, ... By, of 2" blocks. where B,
encodes the content of the i-th tape cells. The first block By of a configuration is either
0...084; or 0...04,. indicating the beginning of a configuration as well as a guess of the
accepting successor. similar to the proof in Theorem 6.3.

Let 29 = {0.1}UZ. Given a string w € (29)*. we construct an automaton V; such
that V| accepts w and all its suffixes iff w is a suffix of a valid sequence of configurations.

This amounts to checking that
l. w starts with a suffix of a block and is followed by a sequence of blocks:

2. the blocks that encode position 0 of the tape. and only those blocks. encode the
beginning of a configuration. That is. for every block B = py ... p,+0. we have p, =0

for all ¢ iff o € {5.4,}: and

3. within a configuration. consecutive blocks encode the contents of consecutive tape

positions.

Conditions (1) and (2) are easily checked by a linear size deterministic Biichi
automaton. To check condition (3). note that given any binary numbers p = pq...pn, and
p=p+1=py...p,. the bit p; # pl iff poy = ... = pp = L. Therefore. the automaton
Vi can check that if wg # w,x . iff there exists .0 < i < n* such that w, € T and
wy =...=uw,_; = L.

Now we construct an automaton V. to check that successive configurations are
valid transitions of the Turing machine T. For discussion. consider only the left branching.
Consider three consecutive blocks B, = pj ...p:l-k.a,. 0 << 2 as well as a block B =
qi -.-qpx0 in the next configuration. The block B encodes the same tape cell as B, iff
pl =q foralll <i< nk. In this case. it should be that o, = nert!(0g.o,.2). where nexrt!
is the “next” relation defined in the proof of Theorem 6.3. We can use nondeterminism to
do this check: the automaton Vs guesses a bit p! in block Bj. and check that for each block
B in the next configuration. either g; # p! or o, = nezt!(09.0).02). Note that Vs has size

polynomial in n.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTENMS 99

Now we can complete the proof in analogy to the prooft of Theorem 6.3. Let
2 = {l.r}. and let w = (dy.wg)(d,.w,)... be a string in (2! x 2°). The automaton V

checks the following:
l. The string wow, ... is accepted by the automata V| and V,: and
2. cither of the following is true:

(a) Eventually there is a mismatch in the direction specified by the input and T at
an existential configuration. i.e.. w contains the string
(do.1)...(d\.o)(dy.1)...(d}.0') where d; € 2. ¢ =4...cand ¢ = ¢ ... are
two consecutive configurations. and ¢ is an existential configuration. such that

eitherd =4, andd' =l.or4 =4 and d' = r.

{b) The initial configuration is eventually reached. and thercafter the accepting con-

figuration is also eventually reached.

If w and its suffixes are accepted by V. then by condition (1). w is a valid sequence of
configurations: by condition (2). if w is the sequence of configuratious guessed by the Turing
machine T'. then it visits the initial and accepting configurations infinitely often. [t follows
that the suffixes of all branches of a 2/ x 29-labeled 2/-tree ((27)*. 7) are accepted by V iff

T has an accepting run. 8

6.3 Uninitialized Specifications

For a specification R. if the RP and URP for R coincides. then we say that R
is uninitialized. In other words. R is uninitialized iff for every computation w. we have
that w satisfies R iff all the suffixes of w satisfy R. Given a specification R over the input
signals I and output signals O. The uninitialized specification problem (USP) for R asks
whether R is uninitialized. If R is an uninitialized specification. then every FSM A that
realizes R induces an uninitialized FSM M’ (obtained from M by dropping its initial state)
that realizes R. Hence for formalisms for which the URP is harder than the RP. the URP
becomes easier if the specification is uninitialized.

Solving the USP for the specification R amounts to checking if R is equiva-

lent to always(R). Clearly. always(R) implies R. thus we only need to check whether

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 100

R implies always(R). For LTL formulas. this can be done by checking the validity of
R = always(R). and for Biichi automata we need to solve the language-containment prob-
lem L{R) C L(always(R)). We show that this simple approach. like the naive solution for
URP. is also optimal. The lower bounds can be obtained by a reduction from either the sat-
isfiability or the validity problems for the corresponding formalisms (for a Biichi automaton
R. we say that R is satisfiable iff it is nonempty and we say that R is valid iff it is universal).
We describe both reductions below.

In the following. we let R be a specification over the finite sets [and O of input
and output signals. respectively. For a computation w = wow, ... in (2/%9)* and a fresh
signal p € T U O. we denote by w p = (wo U {p})w, ... the computation obtained from w

by adding p to wg and leaving the other states unchanged.

Lemma 6.1 The USP for LTL. deterministic. nondeterministic. untversal, or alternating

Biichi automata. is at least as hard as the corresponding satisfiability problem.

Proof. Consider a specification R over I and O. Let p be a signal not in [or O. and
let R' be a specification over [and O’ = O U {p} such that for all w € (2/~Y")<. we have
w = R iff w = R and the first state of w contains p. Thus. if R is an LTL formula. then
R’ = RApand if R is a Biichi automaton. then R’ is obtained from R by removing from
the initial states transitions that are labeled by letters that do not contain p (if the initial
state is reachable. we also have to duplicate it). We claim that R is satisfiable iff R’ is not
uninitialized.

Assume first that R’ is not uninitialized. Then. there is a computation w that
satisfies R’ and some of its suffixes do not satisfy R’. The computation w also satisfies R.
implying that R is satisfiable. Assume now that R is satisfiable. Let w € (2/~9)~ be a
computation that satisfies R. Then the computation v’ = w @ p satisfies R'. but (since p
holds only in the initial state of w’) no proper suffix of w’ satisfies R'. [t follows that R is

not uninitialized. B

Lemma 6.2 The USP for LTL. deterministic. nondeterministic. universal. or alternating

Bichi automata. is at least as hard as the corresponding validity problem.

Proof. Consider a specification R over I and O. Let p be a signal not in [or O. and let R’

be a specification over [and O’ = O U {p} such that for all w € (2/“9")*_ we have w = R’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 101

iff w = R or the first state of w contains p. Thus. if R is in LTL. then R = Rvpand if R
is a Biichi automaton. then R’ is obtained from R by adding a transition labeled by letters
that contain p. from the initial state to an accepting sink (if the initial state is reachable.
we also have to duplicate it). We claim that R is valid iff R’ is uninitialized.

Assume first that R is valid. Then. R’ is valid too. so it must be uninitialized.
Assume now that R is not valid. Let w € (2/%?)* be a computation that does not satisfy
R. Consider the computation v’ = ({p}) - w that is obtained from w by prepending it with
the state {p} (any state in which p holds will do the job). Clearly. w' satisfies R’. whereas

its suffix w does not satisfy R’. It follows that R’ is not uninitialized. 8

We can now obtain tight bounds for the USP for the different formalisms we study

in this chapter.

Theorem 6.5 The USP for LTL. universal. nondeterministic or alternating Biichi au-
tomata is complete for PSPACE.

Proof. For the upper bound. recall that R is uninitialized iff R implies always(R). If
the specification R is an LTL formula. then checking validity of R — always(R) is in
PSPACE [SC85]. If R is an alternating (or universal) automaton. we have to check the
language-containment problem L(R) C L(always(R)). For that. we can first construct a
nondeterministic Biichi automaton R, such that the size of R, is exponential in the size
of R and L(R,) = L(R) [MHS84]. and we construct a nondeterministic Rabin automaton
R. such that the size of R,. is exponential in the size of always(R) and R,. complements
always(R) (that is. L(R.) = £\ L(always(R)).) [MS95]. Now. the product of R, and R, is
a nondeterministic Rabin automaton whose emptiness can be checked in nondeterministic
logarithmic space. implying a PSPACE upper bound for the USP.

The lower bound follows from Lemmas 6.1 and 6.2. and from the fact that the
satisfiability problem for LTL and universal (or alternating) Biichi automata. as well as
the validity problem for nondeterministic Biichi automata are PSPACE-hard {SC85. HU79.
Wols2].

Theorem 6.6 The USP for deterministic Biichi automata is complete for NLOGSPACE.

Proof. For a deterministic Biichi automaton R. the automaton always(U) is universal.

thus its complement R. is a nondeterministic co-Biichi automaton. The product of R and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6. SYNTHESIS OF UNINITIALIZED SYSTEMS 102

R, can be defined as a nondeterministic Rabin automaton. whose emptiness problem can
be solved in nondeterministic logarithmic space. implying an NLOGSPACE upper bound
for the USP.

The lower bound follows from Lemma 6.1. and from the fact that the satisfiability

problems for deterministic Biichi automata is NLOGSPACE-hard. 8

| | URP RP USP = Equivalence |
LTL formulas 2EXP 2EXP PSPACE
deterministic Biichi automata EXP | Quadratic NLOGSPACE
nondeterministic Biichi automata || 2EXP EXP PSPACE
universal Biichi automata EXP EXP PSPACE
alternating Biichi automata 2EXP 2EXP PSPACE

Table 6.2: The complexity of the RP. URP. and USP.

Table 6.2 summarizes our results. Note that the URP for finite-state specifica-
tions that do not allow universal branching (e.g.. deterministic and nondeterministic Biichi
automata) are harder than their initialized counterpart: on the other hand. the URP for
specifications that allow universal branching are not harder than their initialized coun-
terpart. This is because the requirement that the FSM should work from any state is a

universal requirement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

Bibliography

[AdAHM99] R. Alur. L. de Alfaro. T.A. Henzinger. and F.Y.C. Mang. Automating modular
verification. In J.C.M. Baeten and S. Mauw. editors. CONCUR 99: Concur-
rency Theory. Lecture Notes in Computer Science 166-. pages 82-97. Springer-

Verlag. 1999.

[AH98] R. Alur and T.A. Henzinger. Computer-aided verification. An intro-
duction to model building and model checking for concurrent systems.

http://www.eecs.berkeley.edu/~tah/CavBook. 1998. draft.

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in System
Design. 15(1):7-48. 1999.

[AHK97] R. Alur. T.A. Henzinger. and O. Kupferman. Alternating-time temporal logic.
In Proceedings of the 38th Annual Symposium on Foundations of Computer

Science. pages 100-109. IEEE Computer Society Press. 1997.

[AHM™*98] R. Alur. T.A. Henzinger. F.Y.C. Mang. S. Qadeer. S.K. Rajamani. and
S. Tasiran. Mocha: modularity in model checking. In A.J. Hu and M.Y.
Vardi. editors. CAV 98: Computer Aided Verification. Lecture Notes in Com-

puter Science 1427. pages 521-5325. Springer-Verlag. 1998.

[AL93] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on
Programming Languages and Systems. 15(1):73-132. 1993.

[AL95] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on

Programming Languages and Systems. 17(3):507-53-4. 1995.

[ALW89] M. Abadi. L. Lamport. and P. Wolper. Realizable and unrealizable concurrent

program specifications. In G. Ausiello. M. Dezani-Ciancaglini. and S. Ronchi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.eecs.berkeley.edu/~tali/CavBook

BIBLIOGRAPHY 104

[ASSSV94]

[BCCZ99]

[BCG~97]

[Bee30)

[Ber9g|

[Ber99]

[BGS6)

[BGSS]

[BGM92]

Della Rocca. editors. ICALP 89: Automata. Languages. and Programming.

Lecture Notes in Computer Science 372. pages 1-17. Springer-Verlag. 1989.

A. Aziz. T.R. Shiple. V. Singhal. and A.L. Sangiovanni-Vincentelli. Formula-
dependent equivalence for ctl model checking. In D.L. Dill. editor. CAV 94:
Computer-Aided Verification. Lecture Notes in Computer Science 818. pages

324-337. Springer-Verlag. 1994.

A. Biere. A. Cimatti. E. Clarke. and Y. Zhu. Symbolic model checking without
BDDs. In R. Cleaveland. editor. TACAS 99: Tools and Algorithms for the
Construction and Analysis of Systems. Lecture Notes in Computer Science

1579. pages 193-207. Springer-Verlag. 1999.

F. Balarin. M. Chiodo. P. Giusto. H. Hsieh. A. Jurecska. L. Lavagno.
C. Passerone. A. Sangiovanni-Vincentelli. E. Sentovich. K. Suzuki. and B. Tab-
bara. Hardware-Software Co-Design of Embedded Systems: The Polis Ap-

proach. Kluwer Academic Press. 1997,

C. Beeri. On the membership problem for functional and multivalued de-
pendencies in relational databases. ACM Transactions on Database Systems.

5:241-259. 1980.

G. Berry. The foundations of Esterel. In G. Plotkin. C. Stirling. and M. Tofte.
editors. Proof. Language and Interaction: Essays in Honour of Robin Milner.

Foundations of Computing Series. MIT Press. 1998.

G. Berry. The constructive semantics of Esterel. Draft book. current version
3.0. 1999.

A. Blass and Y. Gurevich. Henkin quantifiers and complete problems. Annal

of Pure and Applied Logic. 32:1-16. 1986.

G. Berry and G. Gonthier. The synchronous programming language ESTEREL:

Design. semantics. impiementation. Technical Report 842. INRIA. 1983.

D. Barbara and H. Garcia-Molina. The demarcation protocol: a technique

for maintaining linear arithmetic constraints in distributed database systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 105

In Alain Pirotte. Claude Delobel. and Georg Gottlob. editors. EDBT 92: Er-
tending Database Technology, Lecture Notes in Computer Science 580. pages
373-388. Springer-Verlag. 1992.

[BHSV*96] R. Brayton. G. Hachtel. A. Sangiovanni-Vincentelli. F. Somenzi. A. Aziz.
S. Cheng. S. Edwards. S. Khatri. Y. Kukimoto. A. Pardo. S. Qadeer. R. Ran-
jan. S. Sarwary. T. Shiple. G. Swamy. and T. Villa. VIS: A system for verifica-
tion and synthesis. In D.L. Dill. editor. CAV 94: Computer Aided Verification
1102. pages 428-432. Springer-Verlag. 1996.

[BL69] J.R. Biichi and L.H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society. 138:295-311.

1969.

[Bry36| R.E. Bryant. Graph-based algorithms for boolean function manipulation.

[EEE Transactions on Computers. C-35(38). 1986.

[CC99] P. Cousot and R. Cousot. Refining model checking by abstract interpretation.

Automated Software Engineering Journal. 6(1):69 -95. 1999.

[CAAHMO2] A. Chakrabarti. L. de Alfaro. T.A. Henzinger. and F.Y.C. Mang. Synchronous
and bidirectional component interfaces. To appear in CAV 02: Computer-

Aided Verification. 2002.

[CDFV88] R. Cieslak. C. Desclaux. A. Fawaz. and P. Varaiya. Supervisory control of
discrete-event processes with partial observations. [EEE Transactions on Au-

tomatic Control. 33(3):249-260. 1988.

[CES1] E.M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons for
branching time temporal logic. In Dexter Kozen. editor. Logic of Proyrams:
Workshop. Lecture Notes in Computer Science 131. pages 52-Tl. Springer-
Verlag. 1981.

[Cen] Berkeley Wireless Research Center. http://bwrc.eecs.berkeley.edu.

[CES86] E.M. Clarke. E.A. Emerson. and A.P. Sistla. Automatic verification of finite
state concurrent systems using temporal logic specifications. ACM Transac-

tions on Programming Languages and Systems. 8(2):214-263. 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://bwrc.eecs.berkeley.edu

BIBLIOGRAPHY 106

[Chu62]

[CKS81]

[CL90]

[CLM89]

[Coey5]

[Com90]

[Con92]

[CRS00]

[dAHOla]

[dAHO1b]

[dAHMO00a]

A. Church. Logic. arithmetic. and automata. In Proceedings of International

Congress of Mathematicians. pages 23-35. Institut Mittag-Leffler. 1962.

A.K. Chandra. D.C. Kozen. and L.J. Stockmeyer. Alternation. Journal of the
ACM. 28:114-133. 1981.

K.L. Calvert and S.S. Lam. Formal methods for protocol conversion. [EEE

Journal of Selected Areas in Communications. 8(1):127-142. 1990.

E.M. Clarke. D.E. Long, and K.L. McMillan. Compositional model checking.
In Proceedings of Fourth Annual Symposiurn on Logic in Computer Science.

pages 46-1-475. [EEE Computer Society Press. 1989.

T. Coe. Inside the Pentium FDIV bug. Dr. Dobb’s Journal of Software Tools.
20(4):125 -135. 1995.

[EEE Standards Committee. IEEE Standuard Test Access Port and Boundary
Scan Architecture. [EEE. 345 East 47th Street. New York. NY10017-2394.
July 1990. [EEE Standard 1149.1-1990.

A. Condon. The complexity of stochastic games. [nformation and Computa-

tion. 96(2):203-224. 1992.

F. Cassez. M.D. Ryan. and P.-Y. Schobbens. Proving feature non-interaction
with alternating-time temporal logic. In Language Constructs for Describing

Features. Springer-Verlag. 2000.

L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings of
the Ninth Annual Symposium on Foundations of Software Engineering. ACM
Press. 2001.

L. de Alfaro and T.A. Henzinger. Interface theories for component-based de-
sign. In T.A. Henzinger and C.M. Kirsch. editors. EMSOFT 01: Embedded

Software. Lecture Notes in Computer Science. Springer-Verlag. 2001.

L. de Alfaro. T.A. Henzinger. and F.Y.C. Mang. The control of synchronous
systems. [n C. Palamidessi. editor. CONCUR 00: Concurrency Theory. Lec-

ture Notes in Computer Science 1877. pages 458-473. Springer-Verlag. 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 107

[dAHMO0b] L. de Alfaro. T.A. Henzinger. and F.Y.C. Mang. Detecting errors before reach-
ing them. In E.A. Emerson and A.P. Sistla. editors. CAV 00: Computer-
aided Verification. Lecture Notes in Computer Science 1855. pages 1836-201.

Springer-Verlag. 2000.

[dAHMO1] L. de Alfaro. T.A. Henzinger. and F.Y.C. Mang. The control of synchronous
systems. part I[I. In K. G. Larsen and M. Nielsen. editors. CONCUR 01:
Concurrency Theory. Lecture Notes in Computer Science 2154. pages 566-

581. Springer-Verlag. 2001.

[Dam96] D. Dams. Abstract Interpretation and Partition Refinement for Model Check-

ing. PhD thesis. Technical University of Eindhoven. 1996.

[DFH™93] G. Dowek. A. Felty. H. Herbelin. G. Huet. C. Murthy. C. Parent. C. Paulin-
Mohring. and B. Werner. The Coq proof assistant user’'s guide. Technical

Report 134. INRIA-Rocquencourt. France. 1993.

(Dil89] D.L. Dill. Trace Theory for Autornatic Hierarchical Verification of Speed-
independent Circuits. The MIT Press. 19389.

[D.J89] N. Dershowitz and .J.P. Jouannaud. Rewrite systems. In .J. van Leeuwen.
editor. Handbook of Theoretical Computer Science: Formal Methods and Se-

mantics. volume B. North-Holland. 1989.

[dM94] G. de Micheli. Synthesis and Optimization of Digital Circuits. New York:
McGraw Hill. 1994.

[dSJSB*00] J. L. da Silva Jr.. M. Sgroi. F. De Bernardinis. S.F. Li. A. Sangiovanni-
Vincentelli. and J. Rabaey. Wireless protocols design: Challenges and op-

portunities. In CODES 0U: Hardware/Software Codestgn. 2000.

[EC82] E.A. Emerson and E.M. Clarke. Using branching time temporal logic to syvn-
thesize synchronization skeletons. Science of Computer Programming. 2:241-

266. 1982.

(EJ91] E.A. Emerson and C.S. Jutla. Tree automata. mu-calculus and determinacy

(extended abstract). In Proceedings of the 32th Annual Symposium on Foun-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 108

dations of Computer Science. pages 368-377. IEEE Computer Society Press.
1991.

(EJS93] E.A. Emerson. C.S. Jutla. and A.P. Sistla. On model-checking of fragments on
p-calculus. In C. Courcoubetis. editor. CAV 99: Computer-aided Verification.

Lecture Notes in Computer Science 697. pages 385-396. Springer-Verlag, 1993.

[ELS6] E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the
propositional mu-calculus. In Proceedings of the First Annual Symposium on
Logic in Computer Science. pages 267-278. [EEE Computer Society Press.
1986.

(GH82] Y. Gurevich and L. Harrington. Trees. automata. and games. In Proceedings

of the L4th Annual Symposium on Theory of Computing. pages 60 -65. 1982.

[GLV95) G. Gottlob. N. Leone. and H. Veith. Second order logic and the weak ex-
ponential hierarchies. In J. Wiedermann and P. Hjek. editors. MFCS 95:
Mathematical Foundations of Compuer Science. Lecture Notes in Computer

Science 969. pages 66-81. Springer-Verlag. 1995.

[Gor83| M.J.C. Gordon. HOL: A proof generating system for higher-order logic. In
G.M. Birtwistle and P.A. Subrahmanyam. editors. VLSI Specification. Verifi-

cation and Synthesis. pages 73-128. Kluwer Academic Publishers. 1988.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In
O. Grumberg. editor. CAV 97: Computer-Aided Verification. Lecture Notes

in Computer Science 1254. pages 72--83. Springer-Verlag. 1997.

[GSSAL98] G. Gawlick. R. Segala. J. Sogaard-Andersen. and N. Lynch. Liveness in timed

and untimed systems. [nformation and Computation. 141(2):119-171. 1998.

[Hal93) N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Aca-
demic Publishers. 1993.

[Hen61] L. Henkin. Some remarks on infinitely long formulas. In Infinitistic methods.
Proceedings of the Sympopsium on Foundations of Mathematics. pages 167-

183. Wydawnictwo. Naukowe and Pergamon Press. 1961.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 109

[HK97] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid
automata. In P. Degano. R. Gorrieri. and A. Marchetti-Spaccamela. editors.
ICALP 97: Automata. Languages. and Programming. Lecture Notes in Com-

puter Science 1256. pages 582-593. Springer-Verlag. 1997.

[HKKMO02] T.A. Henzinger. S.C. Krishnan. O. Kupferman. and F.Y.C. Mang. Synthesis
of uninitialized systems. To appear in [CALP 02: Automata. Languages. and

Programming. 2002.

[HKQ98| T.A. Henzinger. O. Kupferman. and S. Qadeer. From prehistoric to
postmodern symbolic model checking. In A.J. Hu and M.Y. Vardi. editors.
CAV 98: Computer-aided Verification. Lecture Notes in Computer Science

1427, pages 195-206. Springer-Verlag. 1998.

[Hol91] G.J. Holzman. Design and Validation of Computer Protocols. Prentice Hall.
1991.
(HQRYS] T.A. Henzinger. S. Qadeer. and S.K. Rajamani. You assume. we guarantee:

methodology and case studies. In A.J. Hu and M.Y. Vardi. editors. CAV 98:
Computer-aided Verification. Lecture Notes in Computer Science 1427, pages

+440--451. Springer-Veriag. 1998.

[HQROO] T.A. Henzinger. S. Qadeer. and S.K. Rajamani. Decomposing refinement
proofs using assume-guarantee reasoning. In Proceedings of the I[nternational
Conference on Computer-aided Design. pages 245-252. IEEE Computer Soci-
ety Press. 2000.

[HRT72] R. Hossley and C. Rackoff. The emptiness problem for automata on infinite
trees. In [IEEE Symposium on [3th Annual Symposium on Foundations of

Computer Science pages 121-124. [EEE Computer Society Press. 1972.

[HUT9] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory. Languages
and Computation. Addison-Wesley. 1979.

[Jur00] M. Jurdzinski. Games for Verification: Algorithmic Issues. PhD thesis. Uni-
versity of Aarhus. 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 110

[Klo91]

[KMP98]

[KMTVO00]

[Koz33]

(KROO]

[KROL]

(KS97]

[Kur94j

[KV96]

J.W. Klop. Term rewriting systems. In S. Abramsky. D. Gabbay. and T.S.E.
Maiibaum. editors. Handbook of Logic in Computer Science. volume 1. pages
1-116. Oxford University Press. 1991.

M. Kaufmann. A. Martin. and C. Pixley. Design constraints in symbolic model
checking. In A.J. Hu and M.Y. Vardi. editors. CAV 98: Computer-aided Ver-
ification. Lecture Notes in Computer Science 1427. pages 477-487. Springer-
Verlag. 1998.

O. Kupferman. P. Madhusudan. P.S. Thiagarajan. and M.Y. Vardi. Open
systems in reactive environments: Control and synthesis. In C. Palamidessi.
editor. CONCUR 00: Concurrency Theory. Lecture Notes in Computer Sci-

ence 1377, pages 92-107. Springer-Verlag. 2000.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer

Science. 27(2):333-354. 1983.

S. Kremer and J.-F. Raskin. Formal verification of non-repudiation protocols
— a game approach. In FMCS 2000: Formal Methods and Computer Security.
2000.

S. Kremer and J.-F. Raskin. A game-based verification of non-repudiation and
fair exchange protocols. In K. G. Larsen and M. Nielsen. editors. CONCUR 01:
Concurrency Theory. Lecture Notes in Computer Science 2154. pages 551-565.

Springer-Verlag. 2001.

R. Kumar and M.A. Shayman. Centralized and decentralized supervisory
control of nondeterministic systems under partial observation. SIA\M Journal

of Control and Optimization. 35(2):363-383. 1997.

R.P. Kurshan. Computer-aided Verification of Coordinating Processes: The

Automata-Theoretic Approach. Princeton University Press. 1994.

O. Kupferman and M.Y. Vardi. Module checking. In R. Alur and T.A. Hen-
zinger. editors. CAV 96: Computer Aided Verification. Lecture Notes in Com-

puter Science 1102. pages 75-86. Springer-Verlag. 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY Lt

[KV99]

[KV00]

[LW88a]

[LWS88b]

(LW90]

[Lyn96]

[Mal94]

[McM93]

[McM97]

[McN93]

[MHS4]

[Mil71]

O. Kupferman and M.Y. Vardi. Church’s problem revisited. The Bulletin of
Symbolic Logic. 5(2):245-263. 1999.

O. Kupferman and M.Y. Vardi. p-calculus synthesis. In M. Nielsen and
B. Rovan. editors. MFCS 00: Mathematical Foundations of Computer Science.
Lecture Notes in Computer Science 1893. pages 497-507. Springer-Verlag.
2000.

F. Lin and W. M. Wonham. Decentralized supervisory control of discrete-

event systems. Information Science. 44(3):199-224. 1988.

F. Lin and W. M. Wonham. On observability of discrete-event systmes. [n-

formation Science. 44(3):173-198. 1988.

F. Lin and W. M Wonham. Decentralized control and coordination of discrete-
event systems with partial observation. [EEFE Transactions on Autornatic

Control. 35(12):1330 1337. 1990.
N.A. Lynch. Distributed Algorithms. Morgan-Kanfmann. 1996.

S. Malik. Analysis of cyclic combinational circuits. [EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems. 13(7):950-956.
1994.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers. 1993.

K.L. McMillan. A compositional rule for hardware design refinement. In
O. Grumberg. editor. CAV 97: Computer-Aided Verification. Lecture Notes

in Computer Science 1254. pages 24-35. Springer-Verlag. 1997.

R. McNaughton. Infinite games played on finite graphs. Annal of Pure and

Applied Logic. 65:119-184. 1993.

S. Miyano and T. Hayashi. Alternating finite automata on w-words. Theoretical

Computer Science. 32:321-230. 1984.

R. Milner. An algebraic definition of simulation between programs. In Second
International .Joint Conference on Artificial Intelligence. pages 481-189. The

British Computer Society. 1971.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY L2

[Mil89)

[MS84]

[MS95]

[Muc8d]

[MW30]

[Okus6)

(Pap94]

[Pau9g4]

[Pou77]

(Pnu8l]

[PR89a]

[PR89b)]

R. Milner. Communication end Concurrency. Prentice-Hall. 1989.

D.E. Muller and P. E. Schupp. Alternating automata on infinite objects. deter-
minacy and Rabin’s theorem. In M. Nivat and D. Perrin. editors. Automata
on Infinite Words. Lecture Notes in Computer Science 192. pages 100-107.

Springer-Verlag. 1984.

D.E. Muller and P.E. Schupp. Simulating aternating tree automata by non-
deterministic automata: New results and new proofs of theorems of Rabin.

McNaughton and Safra. Theoretical Computer Science. 141:69-107. 1995.

A.A. Muchnik. Games on infinite trees and automata with dead-ends. Semi-

otics and Information. 24:17-10. 1984, (in Russian).

Z. Manna and R. Waldinger. A deductive approach to program synthesis. ACM

Transactions on Programming Languages and Systems. 2(1):90-121. 1980.

K. Okumura. A formal protocol conversion method. In Proceedings ACM
SIGCOMM. pages 30-37. ACM Press. 1986.

C.H. Papadimitriou. Computational Complerity. Addison-Wesley. 1994,

L.C. Paulson. [sabelle: a generic theorem prover. Lecture Notes in Computer

Science 828. Springer-Verlag. 1994.

A. Pnueli. The temporal logic of programs. In Proceedings of the [8th Annual
Symposium on Foundations of Computer Science. pages 16-37. IEEE Com-

puter Society Press. 1977.

A. Pnueli. The temporal semantics of concurrent programs. Theoretical Com-

puter Science. 13:45-60. 1981.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings
of the 16th Annual Symposium on Principles of Programming Languages. pages

179-190. ACM Press. 1989.

A. Pnueli and R. Rosner. On the synthesis of an asynchronous reactive module.

In G. Ausiello. M. Dezani-Ciancaglini. and S. Ronchi Della Rocca. editors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 113

[PR9O]

[PRSVOS]

[Pur95]

(QBSPY6)

(QS81]

[Rab69]

[Rab70]

(Rab72]

[Raj99]

[Rei8H]

ICALP 89: Automata. Languages. and Programs. Lecture Notes in Computer

Science 372. pages 652 - 671. Springer-Verlag. 1989.

A. Pneuli and R. Rosner. Distributed reactive systems are hard to synthesis.
In Proceedings of the 31th Annual Symposium on Foundations of Computer

Science. pages 746-757. IEEE Computer Society Press. 1990.

R. Passerone. J.A. Rowson. and A.L. Sangiovanni-Vincentelli. Automatic syn-
thesis of interfaces between incompatible protocols. In Proceedings of the 35th

Annual Conference on Design Automation Conference. pages 8-13. 1998.

A. Puri. Theory of Hybrid Systems and Discrete Event Systems. PhD thesis.

University of California at Berkeley. 1995.

S. Qadeer. R. K. Brayton. V. Singhal. and C. Pixley. Latch redundancy
removal without global reset. In Proceedings of the International Conference

on Computer Design. pages 132 439. [EEE Computer Society Press. 1996.

J.P. Queille and . Sifakis. Specification and verification of concurrent systems
in Cesar. In Proceedings of the 5th International Symposium on Programming.

Lecture Notes in Computer Science 137. pages 337 -351. Springer-Verlag. 1981.

M.O. Rabin. Decidability of second order theories and automata on infinite

trees. Transactions of the American Mathematical Society. 141:1-35. 1969.

M.O. Rabin. Weakly definable relations and special automata. In Y. Bar-Hillel.
editor. Mathematical Logic and Foundations of Set theory. North-Holland.
1970.

M.O. Rabin. Automata on infinite objects and Church’s problem. In Number
13 in Regional Conference Series in Muathematics. American Mathematical

Saciety. 1972.

S.K. Rajamani. New Directions in Refinement Checking. PhD thesis. Univer-

sity of California at Berkeley. 1999.

J.H. Reif. The compexity of two-plaver games of incomplete information.

Journal of Computer and System Sciences. 29:274-301. 1981.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 114

[RGY5|

[Ros92]

[RWST]

[RW89)]

[RW92)

[Saf88]

[SBT96]

[SC85)

[SASJB*00]

[SP9.]

[Sta85]

R.Kumar and V.K. Garg. Modeling and control of logical discrete event sys-

tems. Kluwer Academic Publishers. 1995.

R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis. Weizmann

Institute of Science. Rehovot. Israel. 1992.

P.J. Ramadge and W.M. Wonham. Supervisory control of a class of discrete-

event processes. STAM Journal of Control and Optimization. 25:206-230. 1987.

P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems.

IEEE Transactions on Control Theory. 77:81-98. 1989.

K. Rudie and W. Wonham. Think globally. act locally: Decentralized super-
visory control. [EEE Transactions on Automatic Control. 37(11):1692-1708.
1992.

S. Safra. On the complexity of omega-automata. In Proceedings of the 29th An-
nual Symposium on Foundations of Computer Science. pages 319 -327. [EEE

Computer Saciety Press. 1988.

T. Shiple. G. Berry. and H. Touati. Constructive analysis of cyclic circuits. In

EDTC 96: European Design and Test Conference. pages 328-333. 1996.

A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal

logic. Journal of the ACM. 32:733-749. 1985.

M. Sgroi. J. da Silva Jr.. F. De Bernardinis. F. Burghardt. A. Sangiovanni-
Vincentelli. and J. Rabaey. Designing wireless protocols: Methodology and

applications. In [CASSP 00: Acoustics. Speech. and Signal Processing. 2000.

V. Singhal and C. Pixley. The verification problem for safe replaceability.
In D.L. Dill. editor. CAV 94: Computer-dided Verification. Lecture Notes in
Computer Science 818. pages 311-323. Springer-Verlag. 1994.

E.W. Stark. A proof technique for rely/guarantee properties. In Proceedings
of the 5th Conference on Foundations of Software Technology and Theoretical
Computer Science. Lecture Notes in Computer Science 206. pages 369-391.

Springer-Verlag. 1985.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY 115

[Sti95]

[Sti97]

[Tho93]

Thoys]

TW6S)

[TWO4

[Var95]

(VW94

[Wal70]

[Wol82]

[Wol95]

C. Stirling. Local model checking games. In Insup Lee and Scott A. Smolka.
editors. CONCUR 935: Concurrency Theory. Lecture Notes in Computer Sci-
ence 962. pages 1-11. Springer-Verlag. 1995.

C. Stirling. Bisimulation. model checking and other games. Available at

http://www.dcs.ed.ac.uk/home/cps/.. 1997.

W. Thomas. The Ehrenfeucht-Frasse game in theoretical computer science
(extended abstract). In M.-C. Gaudel and J.-P. Jouannaud. editors. TAP-
SOFT 93: Theory and Practice of Software Development. Lecture Notes in
Computer Science 668. pages 559-568. Springer-Verlag. 1993.

W. Thomas. On the synthesis of strategies in infinite games. In E. W. Mayr
and C. Puech. editors. STACS 95: Theoretical Aspects of Computer Science.

Loesr-e Notes in Computer Science 900. pages 1-13. Springer-Verlag. 1993,

J.W. Thatcher and J.B. Wright. Generalized finite-automata theory with an

application to a decision problem of second-order logic. Mathematical Systems

Theory. 2:57-81. 1968.

J.G. Thistle and W.M. Wonham. Control of infinite behavior of finite au-

tomata. STAM J. on Control and Optimization. 32(4):1075-1097. 1994.

MUY, Vardi. An automata-theoretic approacl to fair realizability and synthesis.
In P. Wolper. editor. CAV 95: Computer-Aided Verification. Lecture Notes in

Computer Science 939. pages 267-292. Springer-Verlag. 1995.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. [nforma-

tion and Computation. 115(1):1-37. 1994.

W. Walkoe. Finite partially-ordered quantification. .Journal of Symbolic Logic.
35:535-555. 1970.
P. Wolper. Synthesis of Communicating Processes from Temporal Logic Spec-

ifications. PhD thesis. Stanford University. 1982.

E.S. Wolf. Hierarchical models of synchronous circuits for formal verification

and substitution. PhD thesis. Stanford University. 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.dcs.ed.ac.uk/home/cps/

BIBLIOGRAPHY L6

[WW96] K. Wong and W. Wonham. Hierarchical control of discrete-event systems.

Discrete Event Dynamic Systems. 6:241-306. 1996.

[YD98] C.H. Yang and D.L. Dill. Validation with guided search of the state space. In
Proceedings of the 35th Annual Conference on Design Automation Conference.

pages 599-604. 1998.

[YSAA97] J. Yuan. J. Shen. J.A. Abrabam. and A. Aziz. On combining formal and infor-
mal verification. In O. Grumberg. editor. CAV 97: Computer Aided Verifica-
tion. Lecture Notes in Computer Science 125:4. pages 376-387. Springer-Verlag.
1997.

[ZP96] U. Zwick and M. Paterson. The complexity of mean payoff games on graphs.

Theoretical Computer Science. 158(1-2):343-359. 1996.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

